期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
支持向量机回归模型中目标函数的五个理解
1
作者 熊令纯 李裕梅 《数据挖掘》 2019年第2期52-59,共8页
支持向量机回归和支持向量机分类有区别,分类问题主要从最大化两类间的间隔入手,而回归问题则需要寻找适合这批数据的自变量和因变量之间关系的回归方程,使得由回归方程计算出来的因变量值和实际数据中的因变量值尽量接近。并且,支持向... 支持向量机回归和支持向量机分类有区别,分类问题主要从最大化两类间的间隔入手,而回归问题则需要寻找适合这批数据的自变量和因变量之间关系的回归方程,使得由回归方程计算出来的因变量值和实际数据中的因变量值尽量接近。并且,支持向量机回归和普通的回归问题还不一样,设定了一个2ε间隔带,在这个间隔带内的数据点、不计算损失,之外的计算损失,在尽量最小化损失的同时,模型的目标函数里多了个1/2‖W‖2,关于这个项,有很多疑问,给支持向量机回归目标函数的理解造成了很大的困难,尤其是在学习了支持向量机分类问题后,更容易把这个项和分类问题中同样的项意味着的最大化间隔相联系,但又不能直接对应上。于是,我们从正则化、结构风险最小化(岭回归、权重衰减)、回归超平面的flatten、二分类问题的转化、回归问题的本质这五个方面着手,从不同的角度进行透彻分析和解释1/2‖W‖2,从而为支持向量机回归模型的目标函数的理解进一步理清思路、扫清障碍。而且,第五个理解站在了新的高度,从问题的本质出发,统一了前面四个理解,也具有自己独特的看法。 展开更多
关键词 支持向量机回归 目标函数的五个理解 正则化 结构风险最小化 回归超平面的Flatten 二分类问题的转化 回归问题的本质
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部