Biosurfactants were synthesized by Pseudomonas aeruginosa (P.A.), using sugar cane molasses as carbon source. Assays were conducted in a shaker with agitation speed of 200 rpm, temperature of 38 ℃ and aeration rat...Biosurfactants were synthesized by Pseudomonas aeruginosa (P.A.), using sugar cane molasses as carbon source. Assays were conducted in a shaker with agitation speed of 200 rpm, temperature of 38 ℃ and aeration ratio (Vm/Vf) of 0.4 and 0.6. A concentration of 3.0% was used for the carbon and energy source (molasses) and of 0.3% for the nitrogen source (NaNO3). Samples were removed at regular times until 96 hours of cultivation. The reduction in surface tension was measured using the ring method; cell concentration was obtained by the dry mass and substrate consumption by the DNS method. The metabolite produced was extracted and quantified by the thioglycolic method. The results showed a maximum surface tension reduction of 46.57% after 60 h, 3.63 g/L of biomass after 8 h (μXmax =0.15 h^-1), 79.60% of substrate consumption (μs= 0.67 h-1) and 4.47 g/L of rhamnolipid (μp=0.029 h^-1).展开更多
A burnup calculation has been performed to evaluate heavy rare earth (terbium--Tb, dysprosium--Dy) production in spent gadolinium oxide (Gd203) installed as a BP (burnable poison). Each amount of Tb and Dy produ...A burnup calculation has been performed to evaluate heavy rare earth (terbium--Tb, dysprosium--Dy) production in spent gadolinium oxide (Gd203) installed as a BP (burnable poison). Each amount of Tb and Dy production derived from the BP has been about 30-40 times larger than those created in FP (fission products). Required cooling time to achieve exemption level on radioactivity concentration produced Tb and Dy derived from the BP are much shorter (BP-Tb: 7.9y, BP-Dy: 〈 0.1y) than those created in FP (FP-Tb: 3,616y, FP-Dy: 6.9y). However, the BP is mixed homogeneously with UO2 pellet in current nuclear fuel system of LWRs (light water reactors), and hence mixing of FP cannot be not avoided. In such a mixture case, the required cooling time of recovered Tb will become 2,653y and that of recovered Dy be 4.8y. For this reason, recovered Tb is unlikely to be resource for utilization, while recovered Dy must be the resource provided the precise separation from the other FP.展开更多
文摘Biosurfactants were synthesized by Pseudomonas aeruginosa (P.A.), using sugar cane molasses as carbon source. Assays were conducted in a shaker with agitation speed of 200 rpm, temperature of 38 ℃ and aeration ratio (Vm/Vf) of 0.4 and 0.6. A concentration of 3.0% was used for the carbon and energy source (molasses) and of 0.3% for the nitrogen source (NaNO3). Samples were removed at regular times until 96 hours of cultivation. The reduction in surface tension was measured using the ring method; cell concentration was obtained by the dry mass and substrate consumption by the DNS method. The metabolite produced was extracted and quantified by the thioglycolic method. The results showed a maximum surface tension reduction of 46.57% after 60 h, 3.63 g/L of biomass after 8 h (μXmax =0.15 h^-1), 79.60% of substrate consumption (μs= 0.67 h-1) and 4.47 g/L of rhamnolipid (μp=0.029 h^-1).
文摘A burnup calculation has been performed to evaluate heavy rare earth (terbium--Tb, dysprosium--Dy) production in spent gadolinium oxide (Gd203) installed as a BP (burnable poison). Each amount of Tb and Dy production derived from the BP has been about 30-40 times larger than those created in FP (fission products). Required cooling time to achieve exemption level on radioactivity concentration produced Tb and Dy derived from the BP are much shorter (BP-Tb: 7.9y, BP-Dy: 〈 0.1y) than those created in FP (FP-Tb: 3,616y, FP-Dy: 6.9y). However, the BP is mixed homogeneously with UO2 pellet in current nuclear fuel system of LWRs (light water reactors), and hence mixing of FP cannot be not avoided. In such a mixture case, the required cooling time of recovered Tb will become 2,653y and that of recovered Dy be 4.8y. For this reason, recovered Tb is unlikely to be resource for utilization, while recovered Dy must be the resource provided the precise separation from the other FP.