To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The ...To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.展开更多
A process for recovering Co and preparing microspherical Co_(3)O_(4)through NH_(3)distillation and phase transformation from ammoniacal solution was investigated.As the basis of thermodynamics,the solubility of Co at ...A process for recovering Co and preparing microspherical Co_(3)O_(4)through NH_(3)distillation and phase transformation from ammoniacal solution was investigated.As the basis of thermodynamics,the solubility of Co at different NH_(3)and CO_(3)^(2-)concentrations was studied,and then the effects of different NH_(3)distillation conditions on Co recovery rate were discussed.Over 94%Co and 96%NH_(3)were recovered through NH_(3)distillation,and the cobalt was precipitated in form of cobalt carbonate ammonium compound salt.Through the analysis of the formation mechanism of the precursor,the precipitation process of cobalt could be divided into two stages,and the cobalt precipitation rate was significantly accelerated in the second stage.In phase transformation,the effect of temperature on the roasted product was investigated.The microspherical Co_(3)O_(4)with a microporous structure was prepared at 300°C,and Co_(3)O_(4)with a mesoporous structure and high-spin state was obtained at 750°C.展开更多
Ceramic ultrafiltration membranes were used to separate titanium silicalite-1 (TS-1) catalysts from the slurry of catalytic ammoximation of cyclohexanone to oxime. Silica was shown to have a great effect on membrane...Ceramic ultrafiltration membranes were used to separate titanium silicalite-1 (TS-1) catalysts from the slurry of catalytic ammoximation of cyclohexanone to oxime. Silica was shown to have a great effect on membrane fouling in the alkaline environment of this system. In the ammoximation system, there are three main silica sources, which are residual silica on the catalyst particles surface during preparation, silica dissolved from TS-1 catalyst particles by ammonia solvent, and silica sol added into the reaction slurry to inhibit the dissolution erosion of the TS-1 catalyst. The silica dissolved by ammonia has been proved to influence membrane fouling most among the three silica sources. This was because the amount of silica dissolved by ammonia was the largest, and the polymerization of silica monomers at high concentration caused colloid particles formation, which led to a dense cake layer depositing on the membrane surface. Meanwhile, the size reduction of catalyst particles caused by alkaline dissolution also increased specific resistances of cake layers.展开更多
A moving boundary model under considering the volume change of spherical resin beads during ion exchange processes was employed to recognize the mechanisms of recovering uranium from carbonate solutions using strongly...A moving boundary model under considering the volume change of spherical resin beads during ion exchange processes was employed to recognize the mechanisms of recovering uranium from carbonate solutions using strongly basic anion exchanger Two important factors, swelling and ion exchange, which directly affect the volume of ion exchangers were taken into account. An ion exchange mechanism has been found for the forward reaction RCl/[UO2 CO3)3]4- at pH 8.5~10.0, where the rate is controlled by liquid-film diffusion at low concentration of the tetravalent uranyl complex anion [UO2 (CO3)3]4-, and is partical diffusion governing at high concentration of the complex anion. The mechanism of RCl/U(Ⅳ) at pH 5. 5~7. 5 is a chemical reaction taking place at the moving boundary of the unreacted nucleus. For the reverse reaction RnU/NaCl, the uranyl tricarbonate complex anion in the resin phase is replaced by Cl- ions with an ion exchange mechanism always determined by particle diffusion. The other forms of uranium in the solid phase loaded on the resin at pH 5. 5~7. 5 should belong to non-exchangeable uranium. The mechanism of the reverse reaction RnU/HCl is always chemical reaction which is not restricted to the moving boundary of the unreacted core.展开更多
The increase of waste production, joined to the difficulties concerning both the identification of new disposal sites and the construction of big conventional incinerators, led in recent years to the development of ne...The increase of waste production, joined to the difficulties concerning both the identification of new disposal sites and the construction of big conventional incinerators, led in recent years to the development of new technologies for waste management such as gasification and melting treatments. The possibility to introduce in the Italian context the DMS (direct melting system) technology, designed and manufactured by Nippon Steel Engineering Co. Ltd., has been taken into account for the scope of proposed work. DMS technology consists in MSW gasification, slags melting and combustion of the syngas produced, with the consequent generation of electric energy through a steam cycle. The system minimizes environmental impact, thanks to an effective recycling of useful resources such as inert melted slags and metals, featuring high flexibility in terms of treatment capacity due to its modular design. The aim of this article is to consider different plant configurations in order to optimize the energy recovery downstream the DMS module. As a case study, landfill gas exploitation integrated in the DMS plant will be considered as a typical situation that could occur in the Italian scenario. The energetic input provided by the biogas allows improving the thermo-economic performances according to market incentives.展开更多
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China+1 种基金Project(2016RS2016)supported by Hunan Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources),ChinaProject supported by the Postdoctoral Research Station of Central South University,China
文摘To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.
基金financially supported by the National Natural Science Foundation of China (Nos. 52034002, U1802253, 51974025)the Fundamental Research Funds for the Central Universities, China (No. FRF-MP-20-04)
文摘A process for recovering Co and preparing microspherical Co_(3)O_(4)through NH_(3)distillation and phase transformation from ammoniacal solution was investigated.As the basis of thermodynamics,the solubility of Co at different NH_(3)and CO_(3)^(2-)concentrations was studied,and then the effects of different NH_(3)distillation conditions on Co recovery rate were discussed.Over 94%Co and 96%NH_(3)were recovered through NH_(3)distillation,and the cobalt was precipitated in form of cobalt carbonate ammonium compound salt.Through the analysis of the formation mechanism of the precursor,the precipitation process of cobalt could be divided into two stages,and the cobalt precipitation rate was significantly accelerated in the second stage.In phase transformation,the effect of temperature on the roasted product was investigated.The microspherical Co_(3)O_(4)with a microporous structure was prepared at 300°C,and Co_(3)O_(4)with a mesoporous structure and high-spin state was obtained at 750°C.
基金Supported by the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20806038), the Natural Science Foundation of Jiangsu Province (BK2008504), the National Science Foundation for Postdoctoral Scientists of China (20070421005) and Jiangsu Planned Projects for Postdoctoral Research Funds (0702020B).
文摘Ceramic ultrafiltration membranes were used to separate titanium silicalite-1 (TS-1) catalysts from the slurry of catalytic ammoximation of cyclohexanone to oxime. Silica was shown to have a great effect on membrane fouling in the alkaline environment of this system. In the ammoximation system, there are three main silica sources, which are residual silica on the catalyst particles surface during preparation, silica dissolved from TS-1 catalyst particles by ammonia solvent, and silica sol added into the reaction slurry to inhibit the dissolution erosion of the TS-1 catalyst. The silica dissolved by ammonia has been proved to influence membrane fouling most among the three silica sources. This was because the amount of silica dissolved by ammonia was the largest, and the polymerization of silica monomers at high concentration caused colloid particles formation, which led to a dense cake layer depositing on the membrane surface. Meanwhile, the size reduction of catalyst particles caused by alkaline dissolution also increased specific resistances of cake layers.
文摘A moving boundary model under considering the volume change of spherical resin beads during ion exchange processes was employed to recognize the mechanisms of recovering uranium from carbonate solutions using strongly basic anion exchanger Two important factors, swelling and ion exchange, which directly affect the volume of ion exchangers were taken into account. An ion exchange mechanism has been found for the forward reaction RCl/[UO2 CO3)3]4- at pH 8.5~10.0, where the rate is controlled by liquid-film diffusion at low concentration of the tetravalent uranyl complex anion [UO2 (CO3)3]4-, and is partical diffusion governing at high concentration of the complex anion. The mechanism of RCl/U(Ⅳ) at pH 5. 5~7. 5 is a chemical reaction taking place at the moving boundary of the unreacted nucleus. For the reverse reaction RnU/NaCl, the uranyl tricarbonate complex anion in the resin phase is replaced by Cl- ions with an ion exchange mechanism always determined by particle diffusion. The other forms of uranium in the solid phase loaded on the resin at pH 5. 5~7. 5 should belong to non-exchangeable uranium. The mechanism of the reverse reaction RnU/HCl is always chemical reaction which is not restricted to the moving boundary of the unreacted core.
文摘The increase of waste production, joined to the difficulties concerning both the identification of new disposal sites and the construction of big conventional incinerators, led in recent years to the development of new technologies for waste management such as gasification and melting treatments. The possibility to introduce in the Italian context the DMS (direct melting system) technology, designed and manufactured by Nippon Steel Engineering Co. Ltd., has been taken into account for the scope of proposed work. DMS technology consists in MSW gasification, slags melting and combustion of the syngas produced, with the consequent generation of electric energy through a steam cycle. The system minimizes environmental impact, thanks to an effective recycling of useful resources such as inert melted slags and metals, featuring high flexibility in terms of treatment capacity due to its modular design. The aim of this article is to consider different plant configurations in order to optimize the energy recovery downstream the DMS module. As a case study, landfill gas exploitation integrated in the DMS plant will be considered as a typical situation that could occur in the Italian scenario. The energetic input provided by the biogas allows improving the thermo-economic performances according to market incentives.