Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to gene...Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to generate milliampere multi-charged helium He2+ ion beam with a 2.45 GHz electron cyclotron resonance ion source (ECRIS) was tested recently. A design using a specfic permanent magnet 2.45 GHz ECRIS (PMECRIS) source (ERCIS) is reported and the He2~ beam production ability is described. With this source, we produced a total helium beam of 40 mA at 40 kV with 180 W of net microwave power and a gas flow of less than 0.5 seem. At steady state the He2+ beam intensity is 4.4 rnA, that being the fraction of multi-charged he- lium ion beam is at approximately 11%.展开更多
Multiple charge ions (MCIs) are necessary for increasing the output energy of particles in accelerators. In general, MCI beams are largely produced by electron beam ion source (EBIS) [1], laser ion source (LIS) [2], o...Multiple charge ions (MCIs) are necessary for increasing the output energy of particles in accelerators. In general, MCI beams are largely produced by electron beam ion source (EBIS) [1], laser ion source (LIS) [2], or high-frequency (mostly >5 GHz) electron cyclotron resonance (ECR) ion source [3]. Among these, only ECR ion source can operate in the continuous wave (CW) mode, while EBIS and LIS only support pulses. In addition, ECR ion source with lower frequency (mostly 2.45 GHz) are required primarily for generating single charge state ions, because the corresponding ECR field (875 Gs) is not sufficiently strong for MCI generation [4].展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11075008 and 11175009)
文摘Multi-charged helium ion beam He2+ is useful for helium accelerator to obtain a higher energy with lower cost and for deuterium accelerator to avoid neutron activation during machine commissioning. An attempt to generate milliampere multi-charged helium He2+ ion beam with a 2.45 GHz electron cyclotron resonance ion source (ECRIS) was tested recently. A design using a specfic permanent magnet 2.45 GHz ECRIS (PMECRIS) source (ERCIS) is reported and the He2~ beam production ability is described. With this source, we produced a total helium beam of 40 mA at 40 kV with 180 W of net microwave power and a gas flow of less than 0.5 seem. At steady state the He2+ beam intensity is 4.4 rnA, that being the fraction of multi-charged he- lium ion beam is at approximately 11%.
基金supported by the National Natural Science Foundation of China (Grant No. 11575013)the National Basic Research Program of China (Grant No. 2014CB84550)
文摘Multiple charge ions (MCIs) are necessary for increasing the output energy of particles in accelerators. In general, MCI beams are largely produced by electron beam ion source (EBIS) [1], laser ion source (LIS) [2], or high-frequency (mostly >5 GHz) electron cyclotron resonance (ECR) ion source [3]. Among these, only ECR ion source can operate in the continuous wave (CW) mode, while EBIS and LIS only support pulses. In addition, ECR ion source with lower frequency (mostly 2.45 GHz) are required primarily for generating single charge state ions, because the corresponding ECR field (875 Gs) is not sufficiently strong for MCI generation [4].