针对边底水气藏开发中后期产水量上升、污水排海量超标的问题,文章以某边底水气田为靶区,开展了边底水气藏污水回注井层优选的研究,初步建立了区域井层优选技术,综合地震属性、反演预测、测井解释和生产动态等,优选出4套回注层位及4口...针对边底水气藏开发中后期产水量上升、污水排海量超标的问题,文章以某边底水气田为靶区,开展了边底水气藏污水回注井层优选的研究,初步建立了区域井层优选技术,综合地震属性、反演预测、测井解释和生产动态等,优选出4套回注层位及4口回注井。研究成果已应用于靶区首次污水回注试验,单井日注水规模达100~250 m 3,回注总量超过1.1×104 m 3,有效防止了污水排海从而造成环境污染的问题。展开更多
In order to enhance coalbed methane recovery, taking a self-developed largecalesimulation system for the platform, a modeling experiment of driving CH_4 by CO_2 gasinjection was studied.The results of experiment indic...In order to enhance coalbed methane recovery, taking a self-developed largecalesimulation system for the platform, a modeling experiment of driving CH_4 by CO_2 gasinjection was studied.The results of experiment indicates that there is a significant lag effectof adsorption and desorption on gas, the gas pressure is changed more rapidly in theprocess of carbon dioxide adsorption of coal than methane adsorption of coal; After theinjection of carbon dioxide, compare with methane single desorption.In an early stage,speed and amount of methane single desorption are greater than the speed and amountof displacement desorption, the speed and amount of displacement desorption becamegreater.In the process of replacement, CH_4 concentration constantly declined, while CO_2concentration constantly rose.In the process of CO_2 gas injection, the temperature of coalhave been significantly increased, it is more beneficial to make CH_4 gas molecules becomefree from the adsorbed state when temperature is increased.Under the pressurestep-down at the same rate, using the method of CO_2 driving CH_4, compared with themethod of conventional pressure step-down, the desorption rate of CH_4 in coal can beraised about 2.13 times, at the same time, a lot of greenhouse gas CO_2 will also be buriedin the ground, there is a very significant environmental benefit.展开更多
文摘针对边底水气藏开发中后期产水量上升、污水排海量超标的问题,文章以某边底水气田为靶区,开展了边底水气藏污水回注井层优选的研究,初步建立了区域井层优选技术,综合地震属性、反演预测、测井解释和生产动态等,优选出4套回注层位及4口回注井。研究成果已应用于靶区首次污水回注试验,单井日注水规模达100~250 m 3,回注总量超过1.1×104 m 3,有效防止了污水排海从而造成环境污染的问题。
文摘In order to enhance coalbed methane recovery, taking a self-developed largecalesimulation system for the platform, a modeling experiment of driving CH_4 by CO_2 gasinjection was studied.The results of experiment indicates that there is a significant lag effectof adsorption and desorption on gas, the gas pressure is changed more rapidly in theprocess of carbon dioxide adsorption of coal than methane adsorption of coal; After theinjection of carbon dioxide, compare with methane single desorption.In an early stage,speed and amount of methane single desorption are greater than the speed and amountof displacement desorption, the speed and amount of displacement desorption becamegreater.In the process of replacement, CH_4 concentration constantly declined, while CO_2concentration constantly rose.In the process of CO_2 gas injection, the temperature of coalhave been significantly increased, it is more beneficial to make CH_4 gas molecules becomefree from the adsorbed state when temperature is increased.Under the pressurestep-down at the same rate, using the method of CO_2 driving CH_4, compared with themethod of conventional pressure step-down, the desorption rate of CH_4 in coal can beraised about 2.13 times, at the same time, a lot of greenhouse gas CO_2 will also be buriedin the ground, there is a very significant environmental benefit.