[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling plantho...[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling planthopper damage. [Method] The data related to rice planthopper occurrence and atmospheric circulation were collected and analyzed with the method of stepwise regression to establish the prediction models. [Result] The factors significantly related to the area attacked by rice plan-thopper were selected. Two types of prediction models were established. One was for Sogatella furcifera (Horvath), based on Atlantic-Europe circulation pattern W in October in that year, Pacific polar vortex area index in October in that year, North America subtropical high index in August in that year, Atlantic-Europe circulation pattern W in June in that year, northern boundary of North America subtropical high in February in that year, Atlantic-Europe polar vortex intensity index in October in that year and Asia polar vortex intensity index in November in the last year; the other type of prediction models were for Nilaparvata lugens (Stal), based on the Eastern Pacific subtropical high intensity index in July in that year, northern hemi- sphere polar vortex area index in October in the last year, Asia polar vortex strength index in November in the last year, north boundary of North America-At- lantic subtropical high in September in that year, north boundary of North Africa-At- lantic-North America subtropical high in January in that year, sunspot in September of the last year and eastern Pacific subtropical high area index in September in that year. [Conclusion] With the stepwise regression, the forecasting equations of the rice planthopper occurrence established based on the atmospheric circulation indices could be used for actual forecast.展开更多
Ground-coupled heat pumps(GCHP)are commonly used in residential heating system.To mitigate the boreholes temperature dropping with operating time,a new exhaust-air recharging system is developed.The new recharging sys...Ground-coupled heat pumps(GCHP)are commonly used in residential heating system.To mitigate the boreholes temperature dropping with operating time,a new exhaust-air recharging system is developed.The new recharging system can be used in three operational modes.In this paper,a ground-coupled heat recovery ventilation(HRV)model is discussed.A thermal model is set up to find the optimal brine flow rate and heat transfer allocation ratio between exhaust and supply coils for maximum heat recovery efficiency.Contrary to the conventional liquid-loop HRV systems,the brine temperature entering the exhaust coil never goes blow zero(0℃),and hence defrosting is needless in the ground-coupled HRV system.This can make the ground-coupled HRV system over 20% more efficient than a conventional HRV system at low outdoor temperatures.展开更多
In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback ...In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.展开更多
This paper presents a practical three dimensional mathematical model of circulation and heat transfer in generator of glass melting furnaces. The model was based on the heat transfer between the smoke flow and the la...This paper presents a practical three dimensional mathematical model of circulation and heat transfer in generator of glass melting furnaces. The model was based on the heat transfer between the smoke flow and the lattice units, and between the air flow and the lattice units. This model not only bypassed the difficulty of complicated computation of the heat transfer process in the regenerator of glass furnaces, but also avoided the irrationality of fixing the temperature distribution on the surfaces. Use of the model yielded very important data and also the method for the design of the regenerator of glass furnaces in practical production.展开更多
An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be eff...An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be efficiently recycled during the chlorination roasting process.By decreasing the partial pressure of the gaseous products,chlorination was promoted.The Box−Behnken design was applied to assessing the interactive effects of the process variables and optimizing the chlorination roasting process.CaCl_(2) dosage and roasting temperature and time were used as variables,and metal recovery efficiencies were used as responses.When the roasting temperature was 1172℃ with a CaCl_(2) addition amount of 30 wt.%and a roasting time of 100 min,the predicted optimal recovery efficiencies of Zn and Pb were 87.85%and 99.26%,respectively,and the results were validated by experiments under the same conditions.The residual Zn-and Pb-containing phases in the roasting slags were ZnFe_(2)O_(4),Zn_(2)SiO_(4),and PbS.展开更多
The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal d...The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.展开更多
In this paper we present a stochastic model for daily average temperature to calculate the temperature indices upon which temperature-based derivatives are written. We propose a seasonal mean and volatility model that...In this paper we present a stochastic model for daily average temperature to calculate the temperature indices upon which temperature-based derivatives are written. We propose a seasonal mean and volatility model that describes the daily average temperature behavior using the mean-reverting Ornstein-Uhlenbeck process. We also use higher order continuous-time autoregressive process with lag 3 for modeling the time evolution of the temperatures after removing trend and seasonality. Our model is fitted to 11 years of data recorded, in the period 1 January 2005 to 31 December 2015, Bahir Dar, Ethiopia, obtained from Ethiopia National Meteorological Services Agency. The analytical approximation formulas are used to price heating degree days(HDD) and cooling degree days(CDD) futures. The suggested model is analytically tractable for derivation of explicit prices for CDD and HDD futures and option. The price of the CDD future is calculated, using analytical approximation formulas. Numerical examples are presented to indicate the accuracy of the method. The results show that our model performs better to predict CDD indices.展开更多
The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however,...The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.展开更多
A grate cooler is key equipment in quenching clinker and recovering heat in cement production. A two-dimensional numerical model based on a 5000 t/d cement plant is proposed to for a study on the gas-solid coupled hea...A grate cooler is key equipment in quenching clinker and recovering heat in cement production. A two-dimensional numerical model based on a 5000 t/d cement plant is proposed to for a study on the gas-solid coupled heat transfer process between the cooling air and clinker in a grate cooler. In this study, we use the Fluent dynamic mesh technique and porous media model through which the transient temperature distribution with the clinker motion process and steady temperature and pressure distribution are obtained. We validate the numerical model with the operating data of the cooling air outlet temperature. Then, we discuss the amount of mid-temperature air outlet and average diameter of clinker particles, which affect the heat effective utilization and cooling air pressure drop in clinker layer. We found that after adding one more mid-temperature air outlet, the average temperature of the air flowing into the heat recovery boiler increases by 29.04℃ and the ratio of heat effective utilization increases by 5.3%. This means heat recovery is more effective on adding one more mid-temperature air outlet. Further, the smaller the clinker particles, the more is the pressure drop in clinker layer; thus more power consumption is needed by the cooling fan.展开更多
In this work, we analyzed time-series and trends of the tropical belt edges and widths with three methods based on the tropopause using new global positioning system radio occultation(GPS RO) data from the Constellati...In this work, we analyzed time-series and trends of the tropical belt edges and widths with three methods based on the tropopause using new global positioning system radio occultation(GPS RO) data from the Constellation Observing System for Meteorology, Ionosphere, and Climate(COSMIC) mission for September 2006–February 2014. The results from the three methods agreed well with previous studies and new features were found. To avoid the El Ni?o Southern Oscillation(ENSO) and Quasi-Biennial Oscillation(QBO) influence, we applied a simple multiple linear regression model to the monthly anomalies to obtain the tropical belt edges and width trends. During the study, we found equatorward movements of the tropical belt edges on both hemispheres. The narrowing of the tropical belt mainly occurred in the Pacific Ocean. We also found that the deseasonalized monthly anomalies of the tropical belt width were closely related with the ENSO and QBO. The tropical belt at a height of 15 km was mostly closely related with the ENSO. The correlations between the QBO and the tropical belt were consistent for the three methods.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(200903051)~~
文摘[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling planthopper damage. [Method] The data related to rice planthopper occurrence and atmospheric circulation were collected and analyzed with the method of stepwise regression to establish the prediction models. [Result] The factors significantly related to the area attacked by rice plan-thopper were selected. Two types of prediction models were established. One was for Sogatella furcifera (Horvath), based on Atlantic-Europe circulation pattern W in October in that year, Pacific polar vortex area index in October in that year, North America subtropical high index in August in that year, Atlantic-Europe circulation pattern W in June in that year, northern boundary of North America subtropical high in February in that year, Atlantic-Europe polar vortex intensity index in October in that year and Asia polar vortex intensity index in November in the last year; the other type of prediction models were for Nilaparvata lugens (Stal), based on the Eastern Pacific subtropical high intensity index in July in that year, northern hemi- sphere polar vortex area index in October in the last year, Asia polar vortex strength index in November in the last year, north boundary of North America-At- lantic subtropical high in September in that year, north boundary of North Africa-At- lantic-North America subtropical high in January in that year, sunspot in September of the last year and eastern Pacific subtropical high area index in September in that year. [Conclusion] With the stepwise regression, the forecasting equations of the rice planthopper occurrence established based on the atmospheric circulation indices could be used for actual forecast.
文摘Ground-coupled heat pumps(GCHP)are commonly used in residential heating system.To mitigate the boreholes temperature dropping with operating time,a new exhaust-air recharging system is developed.The new recharging system can be used in three operational modes.In this paper,a ground-coupled heat recovery ventilation(HRV)model is discussed.A thermal model is set up to find the optimal brine flow rate and heat transfer allocation ratio between exhaust and supply coils for maximum heat recovery efficiency.Contrary to the conventional liquid-loop HRV systems,the brine temperature entering the exhaust coil never goes blow zero(0℃),and hence defrosting is needless in the ground-coupled HRV system.This can make the ground-coupled HRV system over 20% more efficient than a conventional HRV system at low outdoor temperatures.
基金Projects(U1564202,51705018)supported by the National Natural Science Foundation of ChinaProject supported by the Beijing Laboratory of Modern Transportation Metal Materials and Processing Technology and the Beijing Key Laboratory of Metal Forming Lightweight,China。
文摘In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.
文摘This paper presents a practical three dimensional mathematical model of circulation and heat transfer in generator of glass melting furnaces. The model was based on the heat transfer between the smoke flow and the lattice units, and between the air flow and the lattice units. This model not only bypassed the difficulty of complicated computation of the heat transfer process in the regenerator of glass furnaces, but also avoided the irrationality of fixing the temperature distribution on the surfaces. Use of the model yielded very important data and also the method for the design of the regenerator of glass furnaces in practical production.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51620105013,51904351)Innovation-Driven Project of Central South University,China(No.2020CX028)+1 种基金Natural Science Fund for Distinguished Young Scholar of Hunan Province,China(No.2019JJ20031)the National Key R&D Program of China(No.2019YFC1907400)。
文摘An efficient chlorination roasting process for recovering zinc(Zn)and lead(Pb)from copper smelting slag was proposed.Thermodynamic models were established,illustrating that Zn and Pb in copper smelting slag can be efficiently recycled during the chlorination roasting process.By decreasing the partial pressure of the gaseous products,chlorination was promoted.The Box−Behnken design was applied to assessing the interactive effects of the process variables and optimizing the chlorination roasting process.CaCl_(2) dosage and roasting temperature and time were used as variables,and metal recovery efficiencies were used as responses.When the roasting temperature was 1172℃ with a CaCl_(2) addition amount of 30 wt.%and a roasting time of 100 min,the predicted optimal recovery efficiencies of Zn and Pb were 87.85%and 99.26%,respectively,and the results were validated by experiments under the same conditions.The residual Zn-and Pb-containing phases in the roasting slags were ZnFe_(2)O_(4),Zn_(2)SiO_(4),and PbS.
基金Project(2015SK20823) supported by Science and Technology Project of Hunan Province,ChinaProject(15A001) supported by Scientific Research Fund of Hunan Provincial Education Department,China+2 种基金Project(2017CL06) supported by Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,ChinaProject(k1403029-11) supported by Science and Technology Project of Changsha City,ChinaProject(CX2015B372) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.
文摘In this paper we present a stochastic model for daily average temperature to calculate the temperature indices upon which temperature-based derivatives are written. We propose a seasonal mean and volatility model that describes the daily average temperature behavior using the mean-reverting Ornstein-Uhlenbeck process. We also use higher order continuous-time autoregressive process with lag 3 for modeling the time evolution of the temperatures after removing trend and seasonality. Our model is fitted to 11 years of data recorded, in the period 1 January 2005 to 31 December 2015, Bahir Dar, Ethiopia, obtained from Ethiopia National Meteorological Services Agency. The analytical approximation formulas are used to price heating degree days(HDD) and cooling degree days(CDD) futures. The suggested model is analytically tractable for derivation of explicit prices for CDD and HDD futures and option. The price of the CDD future is calculated, using analytical approximation formulas. Numerical examples are presented to indicate the accuracy of the method. The results show that our model performs better to predict CDD indices.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB707206)
文摘The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.
基金supported by the Horizontal Subject(Grant No.11471501)the National Basic Research Program of China("973"Project)(Grant No.2013CB228305)
文摘A grate cooler is key equipment in quenching clinker and recovering heat in cement production. A two-dimensional numerical model based on a 5000 t/d cement plant is proposed to for a study on the gas-solid coupled heat transfer process between the cooling air and clinker in a grate cooler. In this study, we use the Fluent dynamic mesh technique and porous media model through which the transient temperature distribution with the clinker motion process and steady temperature and pressure distribution are obtained. We validate the numerical model with the operating data of the cooling air outlet temperature. Then, we discuss the amount of mid-temperature air outlet and average diameter of clinker particles, which affect the heat effective utilization and cooling air pressure drop in clinker layer. We found that after adding one more mid-temperature air outlet, the average temperature of the air flowing into the heat recovery boiler increases by 29.04℃ and the ratio of heat effective utilization increases by 5.3%. This means heat recovery is more effective on adding one more mid-temperature air outlet. Further, the smaller the clinker particles, the more is the pressure drop in clinker layer; thus more power consumption is needed by the cooling fan.
基金supported by the National Natural Science Foundation of China(Grant No.41374036)the National Key Basic Research Program of China(Grant No.2013CB733301)+1 种基金the Funds for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.41021061)the Fundamental Research Funds for the Central Universities
文摘In this work, we analyzed time-series and trends of the tropical belt edges and widths with three methods based on the tropopause using new global positioning system radio occultation(GPS RO) data from the Constellation Observing System for Meteorology, Ionosphere, and Climate(COSMIC) mission for September 2006–February 2014. The results from the three methods agreed well with previous studies and new features were found. To avoid the El Ni?o Southern Oscillation(ENSO) and Quasi-Biennial Oscillation(QBO) influence, we applied a simple multiple linear regression model to the monthly anomalies to obtain the tropical belt edges and width trends. During the study, we found equatorward movements of the tropical belt edges on both hemispheres. The narrowing of the tropical belt mainly occurred in the Pacific Ocean. We also found that the deseasonalized monthly anomalies of the tropical belt width were closely related with the ENSO and QBO. The tropical belt at a height of 15 km was mostly closely related with the ENSO. The correlations between the QBO and the tropical belt were consistent for the three methods.