Coal exploitation inevitably damages the natural ecological environment through large scale underground exploitation which exhausts the surrounding areas and is the cause of surface subsidence and cracks. These types ...Coal exploitation inevitably damages the natural ecological environment through large scale underground exploitation which exhausts the surrounding areas and is the cause of surface subsidence and cracks. These types of damage seriously lower the underground water table. Deterioration of the environment has certainly an impact on and limits growth of vegetation,which is a very important indicator of a healthy ecological system. Dynamically monitoring vegetation growth under coal exploitation stress by remote sensing technology provides advantages such as large scale coverage,high accuracy and abundant information. A scatter plot was built by a TM (Thematic Mapper) infrared and red bands. A detailed analysis of the distributional characteristics of vegetation pixels has been carried out. Results show that vegetation pixels are affected by soil background pixels,while the distribution of soil pixels presents a linear pattern. Soil line equations were obtained mainly by linear regression. A new band,reflecting vegetation growth,has been obtained based on the elimination of the soil background. A grading of vegetation images was extracted by means of a density slice method. Our analysis indicates that before the exploitation of the Bulianta coal mining area,vegetation growth had gradually reduced; especially intermediate growth vegetation had been transformed into low vegetation. It may have been caused by the deterioration of the brittle environment in the western part of the mining area. All the same,after the start of coal production,vegetation growth has gradually improved,probably due to large scale aerial seeding. Remote sensing interpretation results proved to be consistent with the actual situation on the ground. From our research results we can not conclude that coal exploitation stress has no impact on the growth of vegetation. More de-tailed research on vegetation growth needs to be analyzed.展开更多
基金Project 2003AA322040 supported by the National High Technology Research and Development Program of China
文摘Coal exploitation inevitably damages the natural ecological environment through large scale underground exploitation which exhausts the surrounding areas and is the cause of surface subsidence and cracks. These types of damage seriously lower the underground water table. Deterioration of the environment has certainly an impact on and limits growth of vegetation,which is a very important indicator of a healthy ecological system. Dynamically monitoring vegetation growth under coal exploitation stress by remote sensing technology provides advantages such as large scale coverage,high accuracy and abundant information. A scatter plot was built by a TM (Thematic Mapper) infrared and red bands. A detailed analysis of the distributional characteristics of vegetation pixels has been carried out. Results show that vegetation pixels are affected by soil background pixels,while the distribution of soil pixels presents a linear pattern. Soil line equations were obtained mainly by linear regression. A new band,reflecting vegetation growth,has been obtained based on the elimination of the soil background. A grading of vegetation images was extracted by means of a density slice method. Our analysis indicates that before the exploitation of the Bulianta coal mining area,vegetation growth had gradually reduced; especially intermediate growth vegetation had been transformed into low vegetation. It may have been caused by the deterioration of the brittle environment in the western part of the mining area. All the same,after the start of coal production,vegetation growth has gradually improved,probably due to large scale aerial seeding. Remote sensing interpretation results proved to be consistent with the actual situation on the ground. From our research results we can not conclude that coal exploitation stress has no impact on the growth of vegetation. More de-tailed research on vegetation growth needs to be analyzed.