Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded...Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. This algorithm, called totally coded method (TCM), consists of representing the symbolic determinant of a circuit matrix by code series and performing symbolic analysis by code manipulation. We describe an efficient code-ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, TCM not only covers all advantages of the algorithm via determinant decision diagrams (DDD) but is more simple and efficient than DDD method.展开更多
文摘Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. This algorithm, called totally coded method (TCM), consists of representing the symbolic determinant of a circuit matrix by code series and performing symbolic analysis by code manipulation. We describe an efficient code-ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, TCM not only covers all advantages of the algorithm via determinant decision diagrams (DDD) but is more simple and efficient than DDD method.