Based on a classical Heisenberg lattice model with dipole-dipole interaction and the method of spin dynamic simulation, the magnetic configurations (MC), hysteresis loops (HL) and magnetic resistance (MR) of the nanom...Based on a classical Heisenberg lattice model with dipole-dipole interaction and the method of spin dynamic simulation, the magnetic configurations (MC), hysteresis loops (HL) and magnetic resistance (MR) of the nanomagnets with different geometries, such as circle, square and rectangle, are studied for different directions of applied field. In the case of perpendicular field to the plane, the magnetization and MR are reversible and have not hysteresis. When the field is applied in the plane, the HL is irreversible and is qualitatively well agreeable with the current experimental results. The MR loop is also irreversible and appears two peaks distributed at two sides around zero field. The peaks of magnetic resistance are relative to the vortex state or similar configuration. Large easy-axis anisotropy will suppress the MC anisotropy, and the large magnetoresistance effect disappears.展开更多
The life of electronic equipment is becoming increasingly shorter and its replacement always generates a quantity of waste increase, giving rise to a problem of environmental character and still needed new options of ...The life of electronic equipment is becoming increasingly shorter and its replacement always generates a quantity of waste increase, giving rise to a problem of environmental character and still needed new options of solid waste management that will contribute to global sustainable development. Parts of these waste are TCI (the card's printed circuit) which containing dangerous elements and turns them into a polluting material from the soil, water and air, being harmful to human health if there is to proper and responsible way, so the recycling of TCI to obtain precious metals is an example of industrial materials that can be recycled. Despite this, large quantities of these are not recycled and some others are not considered. The objective of this work is to present a systematic and ecological methodology for the recovery of valuable materials contained in parts of used in computers, circuit boards using a leaching process. The method determines a set of variables to evaluate the kinetics of the reaction and the leaching of metals that form the substrate of metal and to establish the parameters that affect the rate of leaching of metals through a sensitivity analysis, to identify design alternatives. It determines the quantity and percentages that constitutes the motherboard, processor, video cards, accelerator graphics, network and memory cards RAM, among others and its content of metals such as Cu, Fe, Ag, Au and Pt.展开更多
A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loo...A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loop heat pipe heat exchanger (LHPHE). A thermal resistance network approach for a single thermosyphon was first considered to determine the overall heat transfer coefficients and the NTU's for the evaporator and condenser sections. The model incorporated previously determined evaporating and condensing coefficients. The overall effectiveness of the 6, 4 and 2 row LHPHE was then predicted. The theoretical overall effectiveness was compared with experimental data obtained from a R410a filled LHPHE. The experimental overall effectiveness results compared very well with the simulated values, The results showed that the 6 row arrangement performed better than the 4 or 2 row arrangement in the experiment.展开更多
文摘Based on a classical Heisenberg lattice model with dipole-dipole interaction and the method of spin dynamic simulation, the magnetic configurations (MC), hysteresis loops (HL) and magnetic resistance (MR) of the nanomagnets with different geometries, such as circle, square and rectangle, are studied for different directions of applied field. In the case of perpendicular field to the plane, the magnetization and MR are reversible and have not hysteresis. When the field is applied in the plane, the HL is irreversible and is qualitatively well agreeable with the current experimental results. The MR loop is also irreversible and appears two peaks distributed at two sides around zero field. The peaks of magnetic resistance are relative to the vortex state or similar configuration. Large easy-axis anisotropy will suppress the MC anisotropy, and the large magnetoresistance effect disappears.
文摘The life of electronic equipment is becoming increasingly shorter and its replacement always generates a quantity of waste increase, giving rise to a problem of environmental character and still needed new options of solid waste management that will contribute to global sustainable development. Parts of these waste are TCI (the card's printed circuit) which containing dangerous elements and turns them into a polluting material from the soil, water and air, being harmful to human health if there is to proper and responsible way, so the recycling of TCI to obtain precious metals is an example of industrial materials that can be recycled. Despite this, large quantities of these are not recycled and some others are not considered. The objective of this work is to present a systematic and ecological methodology for the recovery of valuable materials contained in parts of used in computers, circuit boards using a leaching process. The method determines a set of variables to evaluate the kinetics of the reaction and the leaching of metals that form the substrate of metal and to establish the parameters that affect the rate of leaching of metals through a sensitivity analysis, to identify design alternatives. It determines the quantity and percentages that constitutes the motherboard, processor, video cards, accelerator graphics, network and memory cards RAM, among others and its content of metals such as Cu, Fe, Ag, Au and Pt.
文摘A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loop heat pipe heat exchanger (LHPHE). A thermal resistance network approach for a single thermosyphon was first considered to determine the overall heat transfer coefficients and the NTU's for the evaporator and condenser sections. The model incorporated previously determined evaporating and condensing coefficients. The overall effectiveness of the 6, 4 and 2 row LHPHE was then predicted. The theoretical overall effectiveness was compared with experimental data obtained from a R410a filled LHPHE. The experimental overall effectiveness results compared very well with the simulated values, The results showed that the 6 row arrangement performed better than the 4 or 2 row arrangement in the experiment.