The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteri...The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order.展开更多
A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations...A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations or bumps. Long-term observations of the rock mass behaviour indicate that the degree of seismic hazard, and therefore also seismic activity in the LGOM area, is affected by the great depth of the copper deposit, high-strength rocks as well as the ability of rock mass to accumulate elastic energy. In this aspect, the effect of the characteristics of initial stress tensor and the orientation of considered mining panel in regards to its components must be emphasised. The primary objective of this study is to answer the question, which of the factors considered as "influencing" the dynamic phenomena occurrence in copper mines have a statistically significant effect on seismic activity and to what extent. Using the general linear model procedure, an attempt has been made to quantify the impact of different parameters, including the depth of deposit, the presence of goaf in the vicinity of operating mining panels and the direction of mining face advance, on seismic activity based on historical data from 2000 to 2010 concerned with the dynamic phenomena recorded in different mining panels in Rudna mine. The direction of mining face advance as well as the goaf situation in the vicinity of the mining panel are of the greatest interest in the case of the seismic activity in LGOM. It can be assumed that the appropriate manipulation of parameters of mining systems should ensure the safest variant of mining method under specific geological and mining conditions.展开更多
Coal mining with ploughs is an ideal coal mining technology for thin and thinner coal seams. The existence conditions of coal seams are different for each other, which affects coal mining with ploughs to different deg...Coal mining with ploughs is an ideal coal mining technology for thin and thinner coal seams. The existence conditions of coal seams are different for each other, which affects coal mining with ploughs to different degrees, and the application results are also different. The authors analyze the affecting factors by means of mathematical methods. The research is useful to the wide application of ploughs.展开更多
Monitoring and analysis of daily gas concentrations at a mining face is a vital task on safety production and security management in the coal-mining industry. This study addresses modeling and prediction of daily gas ...Monitoring and analysis of daily gas concentrations at a mining face is a vital task on safety production and security management in the coal-mining industry. This study addresses modeling and prediction of daily gas concentration variations based on the elliptic orbit model. The model describes the hourly variation in daily gas concentration by mapping its time-series into the polar coordinates to create its elliptic orbit trace for further analysis. Experiments show workability of the proposed method that daily gas concentration variation at a mining face of one coal mine in China is well described by the elliptic orbit model. Result analysis and performance comparison of the proposed elliptic orbit model with the classical AR model on the same prediction tasks indicate potentiality of the proposed elliptic orbit model,which presents a vivid approach for modeling and forecasting daily gas concentration variations in an intuitive and concise way.展开更多
In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the lo...In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.展开更多
Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in...Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology. Firstly, we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail back- filling, step by step swinging up of the tamping arm, gradual compacting, moving formed backfilling scra- per conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement". Meanwhile, the stress changes of backfill body in coal mined out area was monitored by stress sensors, and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face. The site tests results show that using this new backfilling and coal mining integrated technology, the production capacity in the 7606 working face can reach to 283,000 ton a year, and 282,000 ton of solid materials (waste and fly ash) is backfilled, which meets the needs of high production and efficiency. The goaf was compactly backfilled with solid material and the strata behavior was quite desirable, with an actual maximum vertical stress of the backfill body of 5.5 MPa. Backfill body control the movement of overburden within a certain range, and there is no col- lapses of major areas in the overlying strata upon backfilled gob. The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively, which proved the practical significance of this integrated technology.展开更多
The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis o...The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.展开更多
Since the middle of 1980’s, the longwall top-coal caving technique has beveloped rapidly in China. At present, it is one of the main approaches in the thick coal seam mining. This peper describes some mechanica probl...Since the middle of 1980’s, the longwall top-coal caving technique has beveloped rapidly in China. At present, it is one of the main approaches in the thick coal seam mining. This peper describes some mechanica problems of the caving technique, such as the damage and failure of the top-coal, the strata behaviors in the caving face, and the relation of the support and the surrounding rock. In order to employ the caving technique in a widespred scope, the problems such as the caving technique in the hard coal seam, the moving and running of the loose top-coal,and the upper floating of the gas etc. should be systematically systematically studied.展开更多
In shallow burial mining areas, abnormal CO emission and the spontaneous combustion of coal are great threats to safety production at a fully-mechanised working face. In order to prevent the CO concentration in the ai...In shallow burial mining areas, abnormal CO emission and the spontaneous combustion of coal are great threats to safety production at a fully-mechanised working face. In order to prevent the CO concentration in the air return corner from exceeding the critical limit, the paper studied the CO emission regularity and characteristics through theoretical analysis, experimental research and field observation. The results show that the main sources of CO emission were the spontaneous combustion of coal in the goaf and the exhaust emissions coming from underground motorised vehicles. The effect factors of CO emission were also investigated, such as seasonal climate changes, the advancing distance and advancing speed of the working face, the number of underground motorised vehicles and some other factors. In addition to these basic analyses, the influence mechanism of each influence factor was also summarised theoretically. Finally, this study researched the distribution and change law of CO concentration in the fully-mechanised working face in two aspects: controlling the change of monitoring points and time respectively. The research results provide a theoretical basis for preventing the CO concentration from exceeding the critical limit in the air return corner and reducing the possibility of spontaneous combustion of coal. Additionally, the results also provide important theoretical and practical guidelines for protecting miners' health in modern mines featuring high production and high efficiency all over the world.展开更多
基金Projects (50934006, 10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of China
文摘The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order.
文摘A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations or bumps. Long-term observations of the rock mass behaviour indicate that the degree of seismic hazard, and therefore also seismic activity in the LGOM area, is affected by the great depth of the copper deposit, high-strength rocks as well as the ability of rock mass to accumulate elastic energy. In this aspect, the effect of the characteristics of initial stress tensor and the orientation of considered mining panel in regards to its components must be emphasised. The primary objective of this study is to answer the question, which of the factors considered as "influencing" the dynamic phenomena occurrence in copper mines have a statistically significant effect on seismic activity and to what extent. Using the general linear model procedure, an attempt has been made to quantify the impact of different parameters, including the depth of deposit, the presence of goaf in the vicinity of operating mining panels and the direction of mining face advance, on seismic activity based on historical data from 2000 to 2010 concerned with the dynamic phenomena recorded in different mining panels in Rudna mine. The direction of mining face advance as well as the goaf situation in the vicinity of the mining panel are of the greatest interest in the case of the seismic activity in LGOM. It can be assumed that the appropriate manipulation of parameters of mining systems should ensure the safest variant of mining method under specific geological and mining conditions.
文摘Coal mining with ploughs is an ideal coal mining technology for thin and thinner coal seams. The existence conditions of coal seams are different for each other, which affects coal mining with ploughs to different degrees, and the application results are also different. The authors analyze the affecting factors by means of mathematical methods. The research is useful to the wide application of ploughs.
基金supported by the Scientific Research Fund of Hunan Provincial Science and Technology Department (No. 2013GK3090)the National Natural Science Foundation of China (Nos. 51374107 and 51577057)the Research Fund of Hunan Provincial Natural Science Foundation (No. 13JJ8014)
文摘Monitoring and analysis of daily gas concentrations at a mining face is a vital task on safety production and security management in the coal-mining industry. This study addresses modeling and prediction of daily gas concentration variations based on the elliptic orbit model. The model describes the hourly variation in daily gas concentration by mapping its time-series into the polar coordinates to create its elliptic orbit trace for further analysis. Experiments show workability of the proposed method that daily gas concentration variation at a mining face of one coal mine in China is well described by the elliptic orbit model. Result analysis and performance comparison of the proposed elliptic orbit model with the classical AR model on the same prediction tasks indicate potentiality of the proposed elliptic orbit model,which presents a vivid approach for modeling and forecasting daily gas concentration variations in an intuitive and concise way.
文摘In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.
基金Financial supports for this work provided by the National Natural Science Foundation of China (No. 51074165)the Key Program of National Natural Science Foundation of China (No.50834004)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.SZBF2011-6-B35)
文摘Based on the principle of fully mechanized backflling and coal mining technology and combined with the Xingtai Coal Mine conditions, we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology. Firstly, we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail back- filling, step by step swinging up of the tamping arm, gradual compacting, moving formed backfilling scra- per conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement". Meanwhile, the stress changes of backfill body in coal mined out area was monitored by stress sensors, and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face. The site tests results show that using this new backfilling and coal mining integrated technology, the production capacity in the 7606 working face can reach to 283,000 ton a year, and 282,000 ton of solid materials (waste and fly ash) is backfilled, which meets the needs of high production and efficiency. The goaf was compactly backfilled with solid material and the strata behavior was quite desirable, with an actual maximum vertical stress of the backfill body of 5.5 MPa. Backfill body control the movement of overburden within a certain range, and there is no col- lapses of major areas in the overlying strata upon backfilled gob. The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively, which proved the practical significance of this integrated technology.
文摘The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.
文摘Since the middle of 1980’s, the longwall top-coal caving technique has beveloped rapidly in China. At present, it is one of the main approaches in the thick coal seam mining. This peper describes some mechanica problems of the caving technique, such as the damage and failure of the top-coal, the strata behaviors in the caving face, and the relation of the support and the surrounding rock. In order to employ the caving technique in a widespred scope, the problems such as the caving technique in the hard coal seam, the moving and running of the loose top-coal,and the upper floating of the gas etc. should be systematically systematically studied.
基金supports funded by the National Natural Science FoundationShenhua Corporation Limited Jointly Funded Project of China (No. U1361213)+1 种基金Jiangsu Province Science Fund for Distinguished Young Scholars(BK20140005)College student innovation entrepreneurship Funded Project(CUMT,201405)
文摘In shallow burial mining areas, abnormal CO emission and the spontaneous combustion of coal are great threats to safety production at a fully-mechanised working face. In order to prevent the CO concentration in the air return corner from exceeding the critical limit, the paper studied the CO emission regularity and characteristics through theoretical analysis, experimental research and field observation. The results show that the main sources of CO emission were the spontaneous combustion of coal in the goaf and the exhaust emissions coming from underground motorised vehicles. The effect factors of CO emission were also investigated, such as seasonal climate changes, the advancing distance and advancing speed of the working face, the number of underground motorised vehicles and some other factors. In addition to these basic analyses, the influence mechanism of each influence factor was also summarised theoretically. Finally, this study researched the distribution and change law of CO concentration in the fully-mechanised working face in two aspects: controlling the change of monitoring points and time respectively. The research results provide a theoretical basis for preventing the CO concentration from exceeding the critical limit in the air return corner and reducing the possibility of spontaneous combustion of coal. Additionally, the results also provide important theoretical and practical guidelines for protecting miners' health in modern mines featuring high production and high efficiency all over the world.