期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于因果序图的氢能一体化电站运行过程建模及能量流控制策略
1
作者 马利波 赵洪山 +1 位作者 余洋 潘思潮 《电工技术学报》 EI CSCD 北大核心 2024年第16期5220-5237,共18页
为解决大规模的“间歇性电源”接入造成的电能供需不平衡的问题,该文提出氢能一体化电站及其运行过程中电-氢-电能量流控制策略。首先,根据一体化电站电-氢-电能量转换特点,基于因果序图(COG)建立了面向控制的制储氢发电一体化电站运行... 为解决大规模的“间歇性电源”接入造成的电能供需不平衡的问题,该文提出氢能一体化电站及其运行过程中电-氢-电能量流控制策略。首先,根据一体化电站电-氢-电能量转换特点,基于因果序图(COG)建立了面向控制的制储氢发电一体化电站运行动态模型,该模型能够清晰地反映一体化电站不同物理量之间的关系,实现一体化电站运行过程的表征;其次,在所建模型基础上基于自然因果关系原理设计了一体化电站运行过程的功率流和氢气流控制策略,该策略对于刚性关系过程采用反转模型控制,减少了误差反馈耗时,增强了控制器性能;最后,在基于RT-Lab的硬件在环仿真平台上进行了测试,分析了一体化电站不同物理量之间的变化关系。与比例-积分-微分(PID)控制和自抗扰控制(ADRC)方法的对比结果表明,所提控制策略在响应速度、收敛精度和运行效率上优于传统方法,可以更有效地实现氢能一体化电站运行过程的能量流管理。 展开更多
关键词 氢能一体化电站 能量流控制 因果序图 硬件在环测试
下载PDF
LEARNING CAUSAL GRAPHS OF NONLINEAR STRUCTURAL VECTOR AUTOREGRESSIVE MODEL USING INFORMATION THEORY CRITERIA 被引量:1
2
作者 WEI Yuesong TIAN Zheng XIAO Yanting 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第6期1213-1226,共14页
Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis. Traditional causality inference methods have a salient limitation that the model must be linea... Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis. Traditional causality inference methods have a salient limitation that the model must be linear and with Gaussian noise. Although additive model regression can effectively infer the nonlinear causal relationships of additive nonlinear time series, it suffers from the limitation that contemporaneous causal relationships of variables must be linear and not always valid to test conditional independence relations. This paper provides a nonparametric method that employs both mutual information and conditional mutual information to identify causal structure of a class of nonlinear time series models, which extends the additive nonlinear times series to nonlinear structural vector autoregressive models. An algorithm is developed to learn the contemporaneous and the lagged causal relationships of variables. Simulations demonstrate the effectiveness of the nroosed method. 展开更多
关键词 Causal graphs conditional independence conditional mutual information nonlinear struc-tural vector autoregressive model.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部