期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
因果陈述句逻辑系统
1
作者 董英东 《毕节学院学报(综合版)》 2012年第1期40-46,共7页
因果必然性的性质是什么?因果必然性和归纳概率的关系如何?我们将给出因果陈述逻辑的自然语言系统,同时也对该形式语言的范围以及用形式化来界定的一般特征进行阐述。把因果陈述逻辑看作是一个形式语言,从而讨论这种形式语言的基本的性... 因果必然性的性质是什么?因果必然性和归纳概率的关系如何?我们将给出因果陈述逻辑的自然语言系统,同时也对该形式语言的范围以及用形式化来界定的一般特征进行阐述。把因果陈述逻辑看作是一个形式语言,从而讨论这种形式语言的基本的性质。条件化模态逻辑的最大特点是把模态演算建立在演算的条件逻辑的基础上,它用条件蕴涵来定义可能、必然等模态算子,并在此基础上研究条件模态算子之间的关系,使它成为与古典模态逻辑既有联系又有区别的新的模态逻辑系统。 展开更多
关键词 因果陈述句 因果蕴涵 因果模态 逻辑蕴涵
下载PDF
Depression recognition using functional connectivity based on dynamic causal model
2
作者 罗国平 刘刚 +2 位作者 赵竟 姚志剑 卢青 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期367-369,共3页
Dynamic casual modeling of functional magnetic resonance imaging(fMRI) signals is employed to explore critical emotional neurocircuitry under sad stimuli. The intrinsic model of emotional loops is built on the basis... Dynamic casual modeling of functional magnetic resonance imaging(fMRI) signals is employed to explore critical emotional neurocircuitry under sad stimuli. The intrinsic model of emotional loops is built on the basis of Papez's circuit and related prior knowledge, and then three modulatory connection models are established. In these models, stimuli are placed at different points, which represents they affect the neural activities between brain regions, and these activities are modulated in different ways. Then, the optimal model is selected by Bayesian model comparison. From group analysis, patients' intrinsic and modulatory connections from the anterior cingulate cortex (ACC) to the right inferior frontal gyrus (rlFG) are significantly higher than those of the control group. Then the functional connection parameters of the model are selected as classifier features. The classification accuracy rate from the support vector machine(SVM) classifier is 80.73%, which, to some extent, validates the effectiveness of the regional connectivity parameters for depression recognition and provides a new approach for the clinical diagnosis of depression. 展开更多
关键词 depression recognition FMRI dynamic causal model Bayesian model selection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部