Dynamic casual modeling of functional magnetic resonance imaging(fMRI) signals is employed to explore critical emotional neurocircuitry under sad stimuli. The intrinsic model of emotional loops is built on the basis...Dynamic casual modeling of functional magnetic resonance imaging(fMRI) signals is employed to explore critical emotional neurocircuitry under sad stimuli. The intrinsic model of emotional loops is built on the basis of Papez's circuit and related prior knowledge, and then three modulatory connection models are established. In these models, stimuli are placed at different points, which represents they affect the neural activities between brain regions, and these activities are modulated in different ways. Then, the optimal model is selected by Bayesian model comparison. From group analysis, patients' intrinsic and modulatory connections from the anterior cingulate cortex (ACC) to the right inferior frontal gyrus (rlFG) are significantly higher than those of the control group. Then the functional connection parameters of the model are selected as classifier features. The classification accuracy rate from the support vector machine(SVM) classifier is 80.73%, which, to some extent, validates the effectiveness of the regional connectivity parameters for depression recognition and provides a new approach for the clinical diagnosis of depression.展开更多
基金The National Natural Science Foundation of China(No.30900356,81071135)
文摘Dynamic casual modeling of functional magnetic resonance imaging(fMRI) signals is employed to explore critical emotional neurocircuitry under sad stimuli. The intrinsic model of emotional loops is built on the basis of Papez's circuit and related prior knowledge, and then three modulatory connection models are established. In these models, stimuli are placed at different points, which represents they affect the neural activities between brain regions, and these activities are modulated in different ways. Then, the optimal model is selected by Bayesian model comparison. From group analysis, patients' intrinsic and modulatory connections from the anterior cingulate cortex (ACC) to the right inferior frontal gyrus (rlFG) are significantly higher than those of the control group. Then the functional connection parameters of the model are selected as classifier features. The classification accuracy rate from the support vector machine(SVM) classifier is 80.73%, which, to some extent, validates the effectiveness of the regional connectivity parameters for depression recognition and provides a new approach for the clinical diagnosis of depression.