提出了一种新的小波域分层Markov模型。该模型使用高斯马尔可夫随机场(Gauss Markov randomfield,GMRF)模型描述每一尺度小波系数向量的分布,考虑了同一尺度特征之间的相互作用;利用尺度间的因果马尔可夫随机场(Markov random field,MRF...提出了一种新的小波域分层Markov模型。该模型使用高斯马尔可夫随机场(Gauss Markov randomfield,GMRF)模型描述每一尺度小波系数向量的分布,考虑了同一尺度特征之间的相互作用;利用尺度间的因果马尔可夫随机场(Markov random field,MRF)模型和尺度内的非因果MRF模型来描述标记场的局部作用关系,以此确定标记场的先验信息。根据贝叶斯准则,利用多目标问题优化技术,给出了此模型相应的纹理分割算法。最后,与经典模型的分割算法进行了对比实验,验证了所提出算法的有效性。展开更多
文摘提出了一种新的小波域分层Markov模型。该模型使用高斯马尔可夫随机场(Gauss Markov randomfield,GMRF)模型描述每一尺度小波系数向量的分布,考虑了同一尺度特征之间的相互作用;利用尺度间的因果马尔可夫随机场(Markov random field,MRF)模型和尺度内的非因果MRF模型来描述标记场的局部作用关系,以此确定标记场的先验信息。根据贝叶斯准则,利用多目标问题优化技术,给出了此模型相应的纹理分割算法。最后,与经典模型的分割算法进行了对比实验,验证了所提出算法的有效性。