重离子辐射具有独特的物理和生物学特性,在诱变育种等领域有着广泛的应用,但其诱变的机制并不完全清楚。不同于传统的X和γ射线,重离子辐射具有较高的线传能密度(Linear energy transfer,LET),主要诱导团簇状的DNA损伤,其演化为遗传变...重离子辐射具有独特的物理和生物学特性,在诱变育种等领域有着广泛的应用,但其诱变的机制并不完全清楚。不同于传统的X和γ射线,重离子辐射具有较高的线传能密度(Linear energy transfer,LET),主要诱导团簇状的DNA损伤,其演化为遗传变异的过程更为复杂,突变类型也更难预测。目前的实验技术很难在序列水平对重离子击中DNA的靶点进行定位,这致使重离子辐射诱变机制的研究相对滞后。针对这一问题,根据重离子辐射诱导的团簇损伤核心区域富含DNA双链断裂(Double-strand break,DSB)以及同源重组机制对DSB特异性响应的特性,首先构建了四环素抗性基因(TetA)同源重组元件用于确定DNA团簇损伤的序列定位,并在重组原件侧翼连接反向突变筛选基因LacI用于团簇损伤—突变的检测,最后把该质粒转化到大肠杆菌E.coli。在此基础上,比较分析γ射线与碳重离子(80 MeV/u)辐照后同源重组和报告基因突变的情况,验证了该体系用于重离子辐射靶点序列定位及突变检测的可行性,为进一步研究重离子辐射诱变的相关机制奠定了方法学基础。展开更多
文摘重离子辐射具有独特的物理和生物学特性,在诱变育种等领域有着广泛的应用,但其诱变的机制并不完全清楚。不同于传统的X和γ射线,重离子辐射具有较高的线传能密度(Linear energy transfer,LET),主要诱导团簇状的DNA损伤,其演化为遗传变异的过程更为复杂,突变类型也更难预测。目前的实验技术很难在序列水平对重离子击中DNA的靶点进行定位,这致使重离子辐射诱变机制的研究相对滞后。针对这一问题,根据重离子辐射诱导的团簇损伤核心区域富含DNA双链断裂(Double-strand break,DSB)以及同源重组机制对DSB特异性响应的特性,首先构建了四环素抗性基因(TetA)同源重组元件用于确定DNA团簇损伤的序列定位,并在重组原件侧翼连接反向突变筛选基因LacI用于团簇损伤—突变的检测,最后把该质粒转化到大肠杆菌E.coli。在此基础上,比较分析γ射线与碳重离子(80 MeV/u)辐照后同源重组和报告基因突变的情况,验证了该体系用于重离子辐射靶点序列定位及突变检测的可行性,为进一步研究重离子辐射诱变的相关机制奠定了方法学基础。