上海歌剧院新排交响合唱《八百壮士》纪念抗战胜利70周年Shanghai Opera House’s choral-symphonic Eight Hundred Heroes commemorates 70<sup>th</sup>anniversary of the victory of the Anti-Japanese War为纪念反法...上海歌剧院新排交响合唱《八百壮士》纪念抗战胜利70周年Shanghai Opera House’s choral-symphonic Eight Hundred Heroes commemorates 70<sup>th</sup>anniversary of the victory of the Anti-Japanese War为纪念反法西斯战争暨中国人民抗战胜利70周年,上海歌剧院推出原创交响合唱作品《八百壮士》。亚滨、甘霖编剧,甘霖作曲的交响合唱,以新创作的(《八百壮士之歌》为音乐主导动机,共作有15个乐章(含序曲)。日前,上海歌剧院合唱团在指挥林友声的指导下,已全面进入排练阶段。4月24日下午,上海歌剧院党委书记范建萍、副院长李瑞祥、吴洁等领导,对《八百壮士》其中的五个乐章进行了初次试听。交响合唱《八百壮士》取材于1 937年上海"淞沪会战"中著名的"四行仓库守卫战"。讲述了国军第9集团军88师524团在接到坚守上海闸北"四行仓库"的命令后,于次日中午起,在团附谢晋元的指挥下孤军据守,激战四天五夜。展开更多
We describe a collinear velocity-map photoelectron imaging spectrometer, which combines a Wiley-McLaren time-of-flight mass analyzer with a dual-valve laser vaporization source for investigating size-selected cluster ...We describe a collinear velocity-map photoelectron imaging spectrometer, which combines a Wiley-McLaren time-of-flight mass analyzer with a dual-valve laser vaporization source for investigating size-selected cluster and reaction intermediate anions. To generate the reaction anions conveniently, two pulsed valves and a reaction channel are employed instead of premixing carrier gas. The collinear photoelectron imaging spectrometer adopts modified velocity-map electrostatic lens, and provides kinetic energy resolution better than 3%. The performance of the instrument is demonstrated on the photodetachment of Si4^- at 532 and 355 nm, and SiaC^- at 532 nm, respectively. In both cases, photoelectron spectra and anisotropy parameters are obtained from the images. For Si4^-, the spectra show two well- resolved vibrational progressions which correspond to the ground state and the first excited state of the neutral Si4 with peak spacing of 330 and 312 cm^-1, respectively. Preliminary results suggest that the apparatus is a powerful tool for characterizing the electronic structure and photodetachment dynamics of cluster anions.展开更多
The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and mic...The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and micro-flotation experiments.The results showed that S-[(2-hydroxyamino)-2-oxoethyl]-O-octyl-dithiocarbonate ester(HAOODE)exhibited stronger hydrophobization and better flotation performance to malachite(Cu2(OH)2CO3)than octyl-hydroxamic acid(OHA)and its combination with S-allyl-O-ethyl xanthate ester(AEXE).To understand the hydrophobic intensification mechanism of HAOODE to malachite,zeta potential,atomic force microscopy(AFM)and XPS measurements were carried out.The results recommended that malachite chemisorbed HAOODE to form Cu—HAOODE complexes in which the hydroxamate—(O,O)—Cu and—O—C(—S—Cu)—S—configurations co-existed.The co-adsorption of HAOODE’s hetero-difunctional groups was more stable than the single-functionalgroup adsorption of OHA and AEXE,which produced the“loop”structure and intensified the self-assembly alignment of HAOODE on malachite surfaces.In addition,the“h”shape steric orientation of the double hydrophobic groups in HAOODE facilitated stronger hydrophobization toward malachite than the“line”or“V”hydrophobic carbon chains of OHA or AEXE.Thus,HAOODE achieved the preferable flotation recovery of malachite particles in comparison with OHA and AEXE.展开更多
The mechanism of gas discharge in refrigeration temperature range is still not clear. N2, CF4, 20% CF4+N2 and 50%CF4+50%N2 binary gas mixtures were tested under the conditions of –153–25 ℃ and 50–2000 Pa. The ex...The mechanism of gas discharge in refrigeration temperature range is still not clear. N2, CF4, 20% CF4+N2 and 50%CF4+50%N2 binary gas mixtures were tested under the conditions of –153–25 ℃ and 50–2000 Pa. The experimental results show that the minimum of Paschen curves of all test samples shifts to low pressure, from 500 Pa to 200 Pa. The value of Paschen curve minimum of N2 shows remarkable fluctuation. This fluctuation is explained by molecule agglomeration and electronic mean energy. The fluctuation decreases with the increasing mixing ratio of CF4. What’s more, the value of Paschen curve minimum of CF4 decreases with temperature. This phenomenon is ascribed to attach-radiation and secondary process.展开更多
The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the ab...The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.展开更多
Halo-olefinic impurities in 1,1,1,3,3-pentafluoropropane (HFC-245fa) product used as blowing agents, etc. could damage the human body and must be removed. Activated carbon was treated by HCI, HN03 and NaOH, respecti...Halo-olefinic impurities in 1,1,1,3,3-pentafluoropropane (HFC-245fa) product used as blowing agents, etc. could damage the human body and must be removed. Activated carbon was treated by HCI, HN03 and NaOH, respectively. The adsorptive performance of unmodified and modified activated carbons for the removal of a low con- tent of l-chloro-3,3,3-trifluoro-l-propene (HCFC-1233zd), 1,3,3,3-tetrafluoro-l-propene (HFC-1234ze), 1- chloro-l,3,3,3-tetrafluoro-l-propene (HFC-1224zb) and 2-chloro-l,3,3,3-tetrafluoro-l-propene (HFC-1224xe) halo-olefins in the 1,1,1,3,3-pentafluoropropane (HFC-245fa] product was investigated. These halo-olefinic im- purities could be substantially removed from the HFC-245fa product via the adsorption over activated carbon when the adsorption temperature was under 333 K, which can be attributed to the n-n dispersion interactions between the halo-olefins and carbon graphite layer. The basic surface groups of activated carbon could catalyze the decomposition of HFC-245fa to form HFC-1234ze. However, the significant increase in the amount of surface acidic groups of activated carbon led to a distinct decrease of adsorption capacity due to the reduction in the mi- cropore volume of adsorbent and a decrease in the strength of the n-n dispersive interactions between halo- olefin molecules and carbon basal. The breakthrough time of halo-olefinic impurities on activated carbon in- creased with the increase of molecular mass and the decrease of molecular symmetry.展开更多
Activated carbons were prepared by two chemical methods and the adsorption of Cu(II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activa...Activated carbons were prepared by two chemical methods and the adsorption of Cu(II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activated carbon following by substitution of chloride groups with amino groups, and the second involved the nitrilation of activated carbon with reduction of nitro groups to amino groups. Resultant activated carbons were characterized in terms of porous structure, elemental analysis, FTIR spectroscopy, XPS, Boehm titration,and p Hzpc. Kinetic and equilibrium tests were performed for copper adsorption in the batch mode. Also,adsorption mechanism and effect of p H on the adsorption of Cu(II) ions were discussed. Adsorption study shows enhanced adsorption for copper on the modified activated carbons, mainly by the presence of amino groups, and the Freundlich model is applicable for the activated carbons. It is suggested that binding of nitrogen atoms with Cu(II) ions is stronger than that with H+ions due to relatively higher divalent charge or stronger electrostatic force.展开更多
Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adso...Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adsorption capacity of the activated coke. Several techniques, including total nitrogen content measurements, SO2 adsorption, XPS and FTIR analysis, were used to characterize the coke samples. The XPS and FTIR spectra suggest the existence of -CONH2 groups in the H2O2 plus ammonia modified coke. The SO2 adsorption capacity of an activated coke increases slightly with an increase in H2O2 concentration during the modification process. The desulphurization performance of a modified coke is considerably enhanced by increasing the treatment temperature during ammonia modification. The amount of nitrogen in a coke modified by H2O2 plus NH3.H2O is the highest, and the SO2 adsorption capacity of the coke is also the highest (89.9 mg/gC). The NH3.H2O (only) modified sample has lower nitrogen content and lower desulphurization capacity (79.9 mg/gC). H2O modification gives the lowest SO2 adsorption capacity (28.9 mg/gC). The H2O2 pre-treatment is beneficial for the introduction of nitrogen onto the surface of a sample during the following ammonia treatment process.展开更多
The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional ...The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our calculated results show that CO2 is adsorbed preferably on the bridge O atom of the clusters, forming a "chemisorption" carbonate complex, while the CO is adsorbed preferably to the Ti atom of terminal Ti-O.The computed carbonate vibrational frequency values are in good agreement with the results obtained experimentally, which suggests that CO2 in the complex is distorted slightly from its undeviating linear configuration. In addition, the analyses of electronic parameters, electronic density, ionization potential, HOMO-LUMO gap, and density of states(DOS) confirm the charge transfer and interaction between CO2 and the cluster. From the predicted energy profiles, CO2 can be easily adsorbed and activated, while the activation of CO2 on (TiO2)n clusters are structure-dependent and energetically more favorable than that on the bulk TiO2. Overall, this study critically highlights how the small (TiO2)n clusters can influence the CO2 adsorption and activation which are the critical steps for CO2 reduction the surface of a catalyst and subsequent conversion into industrially relevant chemicals and fuels.展开更多
A comparison of the adsorption of benzoic acid and p-nitrobenzoic acid on the new hypercrosslinked polymeric adsorbent AM-1, with that by macroporous Amberlite XAD-4, including the equilibrium adsorption isotherms, th...A comparison of the adsorption of benzoic acid and p-nitrobenzoic acid on the new hypercrosslinked polymeric adsorbent AM-1, with that by macroporous Amberlite XAD-4, including the equilibrium adsorption isotherms, the dynamic adsorption behaviors through column and the adsorption thermodynamics were studied. Results show that Freundlich equation gives a fitting adsorption isotherm. The specific surface of AM-1 is only 67% of that of Amberlite XAD-4, but the adsorption capacities on AM-1 are much higher about 125%~166% than that on Amberlite XAD-4, which is contributed to the micropore mechanism and polarity. The negative values of the adsorption enthalpy are indicative of an exothermic process. Enthalpy and free energy changes of adsorption both manifest a physic-sorption process. The negative values of the adsorption entropy indicate that the adsorption is well consistent with the restricted mobilities and the configurations of the adsorbed benzoic acid molecules on the surface of studied adsorbents with superficial heterogeneity. Both adsorbents were used in mini-column experiments for adsorbing benzoic acid expecting to elucidate the higher breakthrough adsorption capacity of the new hypercrosslinked polymeric adsorbent AM-1 as compared with that of Amberlite XAD-4.展开更多
This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly desc...This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.展开更多
The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) i...The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) ion adsorption onto AC-T.The modified activated carbon is characterized by scanning electron microscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The results of batch experiments indicate that the maximal adsorption could be achieved over the broad pH range of 4.5 to 6.5.Adsorption isotherms and kinetic study suggest that the sorption of Cd(Ⅱ) onto AC-T produces monolayer coverage and that adsorption is controlled by chemical adsorption.And the adsorbent has a good reusability.According to the FT-IR and XPS analyses,electrostatic attraction and cation exchange between Cd(Ⅱ) and oxygen-containing functional groups on AC-T are dominant mechanisms for Cd(Ⅱ) adsorption.展开更多
A polystyrene-based ion-exchange resin was employed as the precursor for preparation of resin-derived carbon spheres (RCSs) through KOH activation with various impregnation ratios. Pore structure, yield and hardness...A polystyrene-based ion-exchange resin was employed as the precursor for preparation of resin-derived carbon spheres (RCSs) through KOH activation with various impregnation ratios. Pore structure, yield and hardness, surface functional groups of the samples and their adsorption performance towards dibenzothiophene (DBT) were investigated. The RCSs with large surface areas (up to 2696 m2/g) and total pore volumes (up to 1.46 cm3/g) exhibited larger adsorption capacities than a commercial ac- tivated carbon, F400. Polanyi-Dubinin-Mane (PDM) model was applied to fit the adsorption data, which proved that micropore filling was involved during the adsorption process. Moreover, a good linear relationship was observed between the ex- tra-micropore volume and adsorption capacity. Intra-particle diffusion (IPD) model was used to describe the kinetic data of DBT onto the adsorbents. The adsorption processes were divided into three stages according to the different diffusion parame- ter. The selective adsorption towards DBT in the presence of competing compounds was also investigated and the high selec- tivity of the RSCs towards DBT may be attributed to the large quantity of acidic oxygen-containing groups.展开更多
文摘上海歌剧院新排交响合唱《八百壮士》纪念抗战胜利70周年Shanghai Opera House’s choral-symphonic Eight Hundred Heroes commemorates 70<sup>th</sup>anniversary of the victory of the Anti-Japanese War为纪念反法西斯战争暨中国人民抗战胜利70周年,上海歌剧院推出原创交响合唱作品《八百壮士》。亚滨、甘霖编剧,甘霖作曲的交响合唱,以新创作的(《八百壮士之歌》为音乐主导动机,共作有15个乐章(含序曲)。日前,上海歌剧院合唱团在指挥林友声的指导下,已全面进入排练阶段。4月24日下午,上海歌剧院党委书记范建萍、副院长李瑞祥、吴洁等领导,对《八百壮士》其中的五个乐章进行了初次试听。交响合唱《八百壮士》取材于1 937年上海"淞沪会战"中著名的"四行仓库守卫战"。讲述了国军第9集团军88师524团在接到坚守上海闸北"四行仓库"的命令后,于次日中午起,在团附谢晋元的指挥下孤军据守,激战四天五夜。
基金ACKNOWLEDGMENTS We thank Professor Hai-yang Li for simulation electron trajectory, and H. Reisler for providing the image analysis software. This work was supported by the National Natural Science Foundation of China (No.20773126), the Ministry of Science and Technology of China, and the Chinese Academy of Sciences.
文摘We describe a collinear velocity-map photoelectron imaging spectrometer, which combines a Wiley-McLaren time-of-flight mass analyzer with a dual-valve laser vaporization source for investigating size-selected cluster and reaction intermediate anions. To generate the reaction anions conveniently, two pulsed valves and a reaction channel are employed instead of premixing carrier gas. The collinear photoelectron imaging spectrometer adopts modified velocity-map electrostatic lens, and provides kinetic energy resolution better than 3%. The performance of the instrument is demonstrated on the photodetachment of Si4^- at 532 and 355 nm, and SiaC^- at 532 nm, respectively. In both cases, photoelectron spectra and anisotropy parameters are obtained from the images. For Si4^-, the spectra show two well- resolved vibrational progressions which correspond to the ground state and the first excited state of the neutral Si4 with peak spacing of 330 and 312 cm^-1, respectively. Preliminary results suggest that the apparatus is a powerful tool for characterizing the electronic structure and photodetachment dynamics of cluster anions.
基金Project(51474253)supported by the National Natural Science Foundation of China。
文摘The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and micro-flotation experiments.The results showed that S-[(2-hydroxyamino)-2-oxoethyl]-O-octyl-dithiocarbonate ester(HAOODE)exhibited stronger hydrophobization and better flotation performance to malachite(Cu2(OH)2CO3)than octyl-hydroxamic acid(OHA)and its combination with S-allyl-O-ethyl xanthate ester(AEXE).To understand the hydrophobic intensification mechanism of HAOODE to malachite,zeta potential,atomic force microscopy(AFM)and XPS measurements were carried out.The results recommended that malachite chemisorbed HAOODE to form Cu—HAOODE complexes in which the hydroxamate—(O,O)—Cu and—O—C(—S—Cu)—S—configurations co-existed.The co-adsorption of HAOODE’s hetero-difunctional groups was more stable than the single-functionalgroup adsorption of OHA and AEXE,which produced the“loop”structure and intensified the self-assembly alignment of HAOODE on malachite surfaces.In addition,the“h”shape steric orientation of the double hydrophobic groups in HAOODE facilitated stronger hydrophobization toward malachite than the“line”or“V”hydrophobic carbon chains of OHA or AEXE.Thus,HAOODE achieved the preferable flotation recovery of malachite particles in comparison with OHA and AEXE.
基金Project(51277063) supported by the National Natural Science Foundation of ChinaProject(51407013) supported in part by the National Natural Science Foundation of China
文摘The mechanism of gas discharge in refrigeration temperature range is still not clear. N2, CF4, 20% CF4+N2 and 50%CF4+50%N2 binary gas mixtures were tested under the conditions of –153–25 ℃ and 50–2000 Pa. The experimental results show that the minimum of Paschen curves of all test samples shifts to low pressure, from 500 Pa to 200 Pa. The value of Paschen curve minimum of N2 shows remarkable fluctuation. This fluctuation is explained by molecule agglomeration and electronic mean energy. The fluctuation decreases with the increasing mixing ratio of CF4. What’s more, the value of Paschen curve minimum of CF4 decreases with temperature. This phenomenon is ascribed to attach-radiation and secondary process.
文摘The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.
基金Supported by the Major Project of Green Chemical Industry of Zhejiang Province(2007C11043)
文摘Halo-olefinic impurities in 1,1,1,3,3-pentafluoropropane (HFC-245fa) product used as blowing agents, etc. could damage the human body and must be removed. Activated carbon was treated by HCI, HN03 and NaOH, respectively. The adsorptive performance of unmodified and modified activated carbons for the removal of a low con- tent of l-chloro-3,3,3-trifluoro-l-propene (HCFC-1233zd), 1,3,3,3-tetrafluoro-l-propene (HFC-1234ze), 1- chloro-l,3,3,3-tetrafluoro-l-propene (HFC-1224zb) and 2-chloro-l,3,3,3-tetrafluoro-l-propene (HFC-1224xe) halo-olefins in the 1,1,1,3,3-pentafluoropropane (HFC-245fa] product was investigated. These halo-olefinic im- purities could be substantially removed from the HFC-245fa product via the adsorption over activated carbon when the adsorption temperature was under 333 K, which can be attributed to the n-n dispersion interactions between the halo-olefins and carbon graphite layer. The basic surface groups of activated carbon could catalyze the decomposition of HFC-245fa to form HFC-1234ze. However, the significant increase in the amount of surface acidic groups of activated carbon led to a distinct decrease of adsorption capacity due to the reduction in the mi- cropore volume of adsorbent and a decrease in the strength of the n-n dispersive interactions between halo- olefin molecules and carbon basal. The breakthrough time of halo-olefinic impurities on activated carbon in- creased with the increase of molecular mass and the decrease of molecular symmetry.
文摘Activated carbons were prepared by two chemical methods and the adsorption of Cu(II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activated carbon following by substitution of chloride groups with amino groups, and the second involved the nitrilation of activated carbon with reduction of nitro groups to amino groups. Resultant activated carbons were characterized in terms of porous structure, elemental analysis, FTIR spectroscopy, XPS, Boehm titration,and p Hzpc. Kinetic and equilibrium tests were performed for copper adsorption in the batch mode. Also,adsorption mechanism and effect of p H on the adsorption of Cu(II) ions were discussed. Adsorption study shows enhanced adsorption for copper on the modified activated carbons, mainly by the presence of amino groups, and the Freundlich model is applicable for the activated carbons. It is suggested that binding of nitrogen atoms with Cu(II) ions is stronger than that with H+ions due to relatively higher divalent charge or stronger electrostatic force.
基金Project 50204011 supported by the National Natural Science Foundation of Chinaa part work of the Inno- vation Program for Undergraduate supported by China University of Mining & Technology,Beijing
文摘Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adsorption capacity of the activated coke. Several techniques, including total nitrogen content measurements, SO2 adsorption, XPS and FTIR analysis, were used to characterize the coke samples. The XPS and FTIR spectra suggest the existence of -CONH2 groups in the H2O2 plus ammonia modified coke. The SO2 adsorption capacity of an activated coke increases slightly with an increase in H2O2 concentration during the modification process. The desulphurization performance of a modified coke is considerably enhanced by increasing the treatment temperature during ammonia modification. The amount of nitrogen in a coke modified by H2O2 plus NH3.H2O is the highest, and the SO2 adsorption capacity of the coke is also the highest (89.9 mg/gC). The NH3.H2O (only) modified sample has lower nitrogen content and lower desulphurization capacity (79.9 mg/gC). H2O modification gives the lowest SO2 adsorption capacity (28.9 mg/gC). The H2O2 pre-treatment is beneficial for the introduction of nitrogen onto the surface of a sample during the following ammonia treatment process.
基金partially supported by the National Natural Science Foundation of China(No.11404074)
文摘The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our calculated results show that CO2 is adsorbed preferably on the bridge O atom of the clusters, forming a "chemisorption" carbonate complex, while the CO is adsorbed preferably to the Ti atom of terminal Ti-O.The computed carbonate vibrational frequency values are in good agreement with the results obtained experimentally, which suggests that CO2 in the complex is distorted slightly from its undeviating linear configuration. In addition, the analyses of electronic parameters, electronic density, ionization potential, HOMO-LUMO gap, and density of states(DOS) confirm the charge transfer and interaction between CO2 and the cluster. From the predicted energy profiles, CO2 can be easily adsorbed and activated, while the activation of CO2 on (TiO2)n clusters are structure-dependent and energetically more favorable than that on the bulk TiO2. Overall, this study critically highlights how the small (TiO2)n clusters can influence the CO2 adsorption and activation which are the critical steps for CO2 reduction the surface of a catalyst and subsequent conversion into industrially relevant chemicals and fuels.
基金Educational Committee of Jiangsu Province. (01KJD150004)
文摘A comparison of the adsorption of benzoic acid and p-nitrobenzoic acid on the new hypercrosslinked polymeric adsorbent AM-1, with that by macroporous Amberlite XAD-4, including the equilibrium adsorption isotherms, the dynamic adsorption behaviors through column and the adsorption thermodynamics were studied. Results show that Freundlich equation gives a fitting adsorption isotherm. The specific surface of AM-1 is only 67% of that of Amberlite XAD-4, but the adsorption capacities on AM-1 are much higher about 125%~166% than that on Amberlite XAD-4, which is contributed to the micropore mechanism and polarity. The negative values of the adsorption enthalpy are indicative of an exothermic process. Enthalpy and free energy changes of adsorption both manifest a physic-sorption process. The negative values of the adsorption entropy indicate that the adsorption is well consistent with the restricted mobilities and the configurations of the adsorbed benzoic acid molecules on the surface of studied adsorbents with superficial heterogeneity. Both adsorbents were used in mini-column experiments for adsorbing benzoic acid expecting to elucidate the higher breakthrough adsorption capacity of the new hypercrosslinked polymeric adsorbent AM-1 as compared with that of Amberlite XAD-4.
基金National Natural Science Foundation of China (No. 20336020) and Science Foundation of Guangdong Province of China (2002C32103).
文摘This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.
基金Supported by the Fundamental Research Funds for the Central Universities(TD2013-2,2012LYB33)the National Natural Science Foundation of China(51278053,21373032)grant-in-aid from Kochi University of Technology and China Scholarship Council
文摘The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) ion adsorption onto AC-T.The modified activated carbon is characterized by scanning electron microscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The results of batch experiments indicate that the maximal adsorption could be achieved over the broad pH range of 4.5 to 6.5.Adsorption isotherms and kinetic study suggest that the sorption of Cd(Ⅱ) onto AC-T produces monolayer coverage and that adsorption is controlled by chemical adsorption.And the adsorbent has a good reusability.According to the FT-IR and XPS analyses,electrostatic attraction and cation exchange between Cd(Ⅱ) and oxygen-containing functional groups on AC-T are dominant mechanisms for Cd(Ⅱ) adsorption.
文摘A polystyrene-based ion-exchange resin was employed as the precursor for preparation of resin-derived carbon spheres (RCSs) through KOH activation with various impregnation ratios. Pore structure, yield and hardness, surface functional groups of the samples and their adsorption performance towards dibenzothiophene (DBT) were investigated. The RCSs with large surface areas (up to 2696 m2/g) and total pore volumes (up to 1.46 cm3/g) exhibited larger adsorption capacities than a commercial ac- tivated carbon, F400. Polanyi-Dubinin-Mane (PDM) model was applied to fit the adsorption data, which proved that micropore filling was involved during the adsorption process. Moreover, a good linear relationship was observed between the ex- tra-micropore volume and adsorption capacity. Intra-particle diffusion (IPD) model was used to describe the kinetic data of DBT onto the adsorbents. The adsorption processes were divided into three stages according to the different diffusion parame- ter. The selective adsorption towards DBT in the presence of competing compounds was also investigated and the high selec- tivity of the RSCs towards DBT may be attributed to the large quantity of acidic oxygen-containing groups.