Dissolved organic nitrogen (DON) represents a significant pool of soluble nitrogen (N) in soil ecosystems. Soil samples under three different horticultural management practices were collected from the Xiaxiyang Or...Dissolved organic nitrogen (DON) represents a significant pool of soluble nitrogen (N) in soil ecosystems. Soil samples under three different horticultural management practices were collected from the Xiaxiyang Organic Vegetable and Fruit Farm, Shanghai, China, to investigate the dynamics of N speciation during 2 months of aerobic incubation, to compare the effects of different soils on the mineralization of ^14C-labeled amino acids and peptides, and to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant blockage in soil N supply. The dynamics of N speciation was found to be significantly affected by mineralization and immobilization. DON, total free amino acids, and NH^+-N were maintained at very low levels and did not accumulate, whereas NO3^--N gradually accumulated in these soils. The conversion of insoluble organic N to low-molecular-weight (LMW) DON represented a main constraint to N supply, while conversions of LMW DON to NH4^+-N and NH4^+-N to NO3^--N did not. Free amino acids and peptides were rapidly mineralized in the soils by the microbial community and consequently did not accumulate in soil. Turnover rates of the additional amino acids and peptides were soil-dependent and generally followed the order of organic soil 〉 transitional soil 〉 conventional soil. The turnover of high-molecular-weight DON was very slow and represented the major DON loss. Further studies are needed to investigate the pathways and bottlenecks of organic N degradation.展开更多
A total of 222 surface soil samples and 40 plant samples were collected to investigate the spatial distribution and possible sources of soil heavy metals and to know the uptake and translocation of heavy metals from r...A total of 222 surface soil samples and 40 plant samples were collected to investigate the spatial distribution and possible sources of soil heavy metals and to know the uptake and translocation of heavy metals from roots to different plant parts in a representative vegetable production area in the Baguazhou Island, a suburb of Nanjing City, East China. The arithmetic mean values of total Cd, Cr,Cu, Ni, Pb, and Zn concentrations in the soils were 0.314, 133, 41.0, 58.0, 31.8, and 114 mg kg-1, respectively. All of these values were above the topsoil background values in the Nanjing area. Multivariate and geostatistical analyses showed that soil Cd contamination was derived mainly from agricultural practices. In contrast, Cu and Zn were derived mainly from soil parent materials and Pb from atmospheric deposition from highway gasoline stations. Artemisia selengensis, a locally important specialty vegetable, accumulated heavy metals primarily in the edible leaves. The general distribution of heavy metal concentrations in this plant species showed that the highest occurred in the leaves, intermediate in the stems and lowest in the roots. Cd had the highest concentration factor(root-to-soil ratio) and may pose increased health risks in the future to the local population through the consumption of contaminated vegetables.展开更多
基金Project supported by the National High Technology Research and Development Program (863 program) of China(No. 2006AA10A311)the National Natural Science Foundation of China (No. 40901124)the Shanghai Leading Aca-demic Discipline Program,China (No. B209)
文摘Dissolved organic nitrogen (DON) represents a significant pool of soluble nitrogen (N) in soil ecosystems. Soil samples under three different horticultural management practices were collected from the Xiaxiyang Organic Vegetable and Fruit Farm, Shanghai, China, to investigate the dynamics of N speciation during 2 months of aerobic incubation, to compare the effects of different soils on the mineralization of ^14C-labeled amino acids and peptides, and to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant blockage in soil N supply. The dynamics of N speciation was found to be significantly affected by mineralization and immobilization. DON, total free amino acids, and NH^+-N were maintained at very low levels and did not accumulate, whereas NO3^--N gradually accumulated in these soils. The conversion of insoluble organic N to low-molecular-weight (LMW) DON represented a main constraint to N supply, while conversions of LMW DON to NH4^+-N and NH4^+-N to NO3^--N did not. Free amino acids and peptides were rapidly mineralized in the soils by the microbial community and consequently did not accumulate in soil. Turnover rates of the additional amino acids and peptides were soil-dependent and generally followed the order of organic soil 〉 transitional soil 〉 conventional soil. The turnover of high-molecular-weight DON was very slow and represented the major DON loss. Further studies are needed to investigate the pathways and bottlenecks of organic N degradation.
基金supported by the National High Technology Research and Development Program (863 Program) of China (No. 2012AA101402-2)
文摘A total of 222 surface soil samples and 40 plant samples were collected to investigate the spatial distribution and possible sources of soil heavy metals and to know the uptake and translocation of heavy metals from roots to different plant parts in a representative vegetable production area in the Baguazhou Island, a suburb of Nanjing City, East China. The arithmetic mean values of total Cd, Cr,Cu, Ni, Pb, and Zn concentrations in the soils were 0.314, 133, 41.0, 58.0, 31.8, and 114 mg kg-1, respectively. All of these values were above the topsoil background values in the Nanjing area. Multivariate and geostatistical analyses showed that soil Cd contamination was derived mainly from agricultural practices. In contrast, Cu and Zn were derived mainly from soil parent materials and Pb from atmospheric deposition from highway gasoline stations. Artemisia selengensis, a locally important specialty vegetable, accumulated heavy metals primarily in the edible leaves. The general distribution of heavy metal concentrations in this plant species showed that the highest occurred in the leaves, intermediate in the stems and lowest in the roots. Cd had the highest concentration factor(root-to-soil ratio) and may pose increased health risks in the future to the local population through the consumption of contaminated vegetables.