The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observatio...The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.展开更多
Objective The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve li...Objective The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve ligation (SNL) in a large size of samples.Methods Adult Sprague-Dawley rats were divided into normal and SNL groups.Electrophysiological technique was used to record the characteristics of WDR neurons in the spinal dorsal horn.Results Compared with the WDR neurons in normal rats,the WDR neurons in SNL rats showed an increase in excitability,manifested by an enlargement of the receptive field size,an increase in the proportion of neurons that exhibited spontaneous activities,decreases in the Cresponse threshold and latency,and an increase in the C-response duration.In addition,the numbers of A-and C-fiberevoked discharges were smaller in SNL rats than in normal rats.Conclusion The excitability of spinal WDR neurons increased in rats with neuropathic pain induced by L5 SNL.The increase in excitability of WDR neurons may contribute to the development of neuropathic pain.展开更多
Mycophagists can influence fungal diversity within their home ranges by ensuring the continued and effective dispersal of spores from one site to another. However, the passage of spores through the digestive tract of ...Mycophagists can influence fungal diversity within their home ranges by ensuring the continued and effective dispersal of spores from one site to another. However, the passage of spores through the digestive tract of vertebrates can affect the activity and viability of the spores ingested. This phenomenon has been rarely documented in opportunistic mycophagists consuming epigeous fungi. Using laboratory experiments, we investigated the activity and viability of spores of two epigeous ectomycorrhizal fungal species (Laccaria trichodermophora and SuiUus tomentosus) after passage through the digestive tract of two opportunistic mycophagous small rodents, the volcano mouse Peromyscus alstoni and the deer mouse P maniculatus. We found that passage through the gut of either species of rodent had a significant effect on spore activity and viability for both fungal species. The proportion of active spores (0.37-0.40) of L. trichodermophora in the feces of both species of rodents was less than that recorded for the control (0.82). However, the proportion of active spores (0.644).73) of S. tomentosus in the feces of each species of rodent was higher than in the control (0.40). On the other hand, the viability of spores was lower (0.26-0.30 in L. trichodermophora and 0.604).69 in S. tomentosus) for both fungi when consumed by either rodent relative to the controls (0.90 in L. trichodermophora and 0.82 in S. tomentosus). These findings suggest that these rodent species may be effective dispersers of both epigeous fungi [Current Zoology 57 (3): 293-299, 2011].展开更多
AIM:The localization of CB1 receptors in the spinal cord,spinal roots,dorsal root ganglion(DRG),and peripheral nerve of the rat was determined.METHODS:We studied the distribution of CB1 cannabinoid receptors by immuno...AIM:The localization of CB1 receptors in the spinal cord,spinal roots,dorsal root ganglion(DRG),and peripheral nerve of the rat was determined.METHODS:We studied the distribution of CB1 cannabinoid receptors by immunohistochemistry using an antibody raised against the N-terminal of the receptor.RESULTS:The spinal cord showed numerous transverse fibers labelled for CB1 receptors throughout and concentrated in the dorsal horn.Lightly-stained cells were observed throughout the spinal cord gray matter.The DRG also showed cells and fibers labelled for CB1 receptors.Labelled fibers were observed in both dorsal and ventral roots as well as in peripheral nerves.CONCLUSION:The presence of CB1 receptors in the DRG,the dorsal root,and the dorsal horn is in accordance with the analgesic effects of cannabinoids.The presence of labelled cells and fibers in the ventral horn and ventral root provides a substrate for cannabinoid-induced muscle relaxant and antispastic effects.展开更多
文摘The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.
基金supported by the grants from National Natural Science Foundation of China(No. 30600173,81070893)the Key Project of China Ministry of Education(No. 109003)+1 种基金the National Basic Research Development Program(973 Program) of China (No.2007CB512501)Beijing Municipal Commission of Education "Special Grants for Outstanding Ph.D Program Tutors"
文摘Objective The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve ligation (SNL) in a large size of samples.Methods Adult Sprague-Dawley rats were divided into normal and SNL groups.Electrophysiological technique was used to record the characteristics of WDR neurons in the spinal dorsal horn.Results Compared with the WDR neurons in normal rats,the WDR neurons in SNL rats showed an increase in excitability,manifested by an enlargement of the receptive field size,an increase in the proportion of neurons that exhibited spontaneous activities,decreases in the Cresponse threshold and latency,and an increase in the C-response duration.In addition,the numbers of A-and C-fiberevoked discharges were smaller in SNL rats than in normal rats.Conclusion The excitability of spinal WDR neurons increased in rats with neuropathic pain induced by L5 SNL.The increase in excitability of WDR neurons may contribute to the development of neuropathic pain.
文摘Mycophagists can influence fungal diversity within their home ranges by ensuring the continued and effective dispersal of spores from one site to another. However, the passage of spores through the digestive tract of vertebrates can affect the activity and viability of the spores ingested. This phenomenon has been rarely documented in opportunistic mycophagists consuming epigeous fungi. Using laboratory experiments, we investigated the activity and viability of spores of two epigeous ectomycorrhizal fungal species (Laccaria trichodermophora and SuiUus tomentosus) after passage through the digestive tract of two opportunistic mycophagous small rodents, the volcano mouse Peromyscus alstoni and the deer mouse P maniculatus. We found that passage through the gut of either species of rodent had a significant effect on spore activity and viability for both fungal species. The proportion of active spores (0.37-0.40) of L. trichodermophora in the feces of both species of rodents was less than that recorded for the control (0.82). However, the proportion of active spores (0.644).73) of S. tomentosus in the feces of each species of rodent was higher than in the control (0.40). On the other hand, the viability of spores was lower (0.26-0.30 in L. trichodermophora and 0.604).69 in S. tomentosus) for both fungi when consumed by either rodent relative to the controls (0.90 in L. trichodermophora and 0.82 in S. tomentosus). These findings suggest that these rodent species may be effective dispersers of both epigeous fungi [Current Zoology 57 (3): 293-299, 2011].
文摘AIM:The localization of CB1 receptors in the spinal cord,spinal roots,dorsal root ganglion(DRG),and peripheral nerve of the rat was determined.METHODS:We studied the distribution of CB1 cannabinoid receptors by immunohistochemistry using an antibody raised against the N-terminal of the receptor.RESULTS:The spinal cord showed numerous transverse fibers labelled for CB1 receptors throughout and concentrated in the dorsal horn.Lightly-stained cells were observed throughout the spinal cord gray matter.The DRG also showed cells and fibers labelled for CB1 receptors.Labelled fibers were observed in both dorsal and ventral roots as well as in peripheral nerves.CONCLUSION:The presence of CB1 receptors in the DRG,the dorsal root,and the dorsal horn is in accordance with the analgesic effects of cannabinoids.The presence of labelled cells and fibers in the ventral horn and ventral root provides a substrate for cannabinoid-induced muscle relaxant and antispastic effects.