Energy is essential for every human activity for more comfortable life, but it also consumes more natural resources. Fossil fuel is the major energy source for energy consumption, and it also emits a lot of air pollut...Energy is essential for every human activity for more comfortable life, but it also consumes more natural resources. Fossil fuel is the major energy source for energy consumption, and it also emits a lot of air pollution during usage to atmosphere and not reproductively. Electrical energy is the secondary energy sources from fossil fuel which is used to operate air conditioning system. In order to control human comfort temperature, it is usually required when the temperature differences swing between indoor and outdoor temperatures. PCMs (phase change materials) are the high latent heat materials which can be used in building materials for energy conservation purpose. PCMs can store thermal energy and prevent heat to pass through temperature control areas. Paraffin has been used as PCMs which is absorbed into the pore of fly ash as paraffin/fly-ash composite and mixed into the buildings materials. Paraffin is an organic material with high melting point (-59 ~C) and nonflammable material, therefore, it can be used as the building materials for the function of PCMs for energy saving purposes. Composite PCMs can be prepared by vacuum impregnation process. Paraffin in liquid form will be impregnated into the pore of fly ash by vacuum capillary force to form paraffin/fly ash composite PCMs. Vacuum impregnation pressures, vacuum times, impregnation times of liquid paraffin in fly ash pores and temperatures for melting the solid paraffin into the liquid form are all affect on the thermal properties of paraffin/fly ash composite PCMs. Composite PCMs will be selected by the optimum thermal properties with optimum of the production conditions for replace the cement powder in the mortar plate compositions. Cement mortar plate with and without composite PCMs will be tested for the thermal insulation properties by comparison as the real day and night time for 8 h period from spot light turn on and off. Temperature detection on the surface and inside the model building under mortar plate with and without composite PCMs is detected every 1 min. Temperature differences between surface of mortar plate over the model building and inside temperature of model building under mortar plates increase with more composite PCMs contents in mortar plates. Thermal insulation efficiency in the building can be enhanced by the composite PCMs utilization as the composition of the building materials.展开更多
文摘Energy is essential for every human activity for more comfortable life, but it also consumes more natural resources. Fossil fuel is the major energy source for energy consumption, and it also emits a lot of air pollution during usage to atmosphere and not reproductively. Electrical energy is the secondary energy sources from fossil fuel which is used to operate air conditioning system. In order to control human comfort temperature, it is usually required when the temperature differences swing between indoor and outdoor temperatures. PCMs (phase change materials) are the high latent heat materials which can be used in building materials for energy conservation purpose. PCMs can store thermal energy and prevent heat to pass through temperature control areas. Paraffin has been used as PCMs which is absorbed into the pore of fly ash as paraffin/fly-ash composite and mixed into the buildings materials. Paraffin is an organic material with high melting point (-59 ~C) and nonflammable material, therefore, it can be used as the building materials for the function of PCMs for energy saving purposes. Composite PCMs can be prepared by vacuum impregnation process. Paraffin in liquid form will be impregnated into the pore of fly ash by vacuum capillary force to form paraffin/fly ash composite PCMs. Vacuum impregnation pressures, vacuum times, impregnation times of liquid paraffin in fly ash pores and temperatures for melting the solid paraffin into the liquid form are all affect on the thermal properties of paraffin/fly ash composite PCMs. Composite PCMs will be selected by the optimum thermal properties with optimum of the production conditions for replace the cement powder in the mortar plate compositions. Cement mortar plate with and without composite PCMs will be tested for the thermal insulation properties by comparison as the real day and night time for 8 h period from spot light turn on and off. Temperature detection on the surface and inside the model building under mortar plate with and without composite PCMs is detected every 1 min. Temperature differences between surface of mortar plate over the model building and inside temperature of model building under mortar plates increase with more composite PCMs contents in mortar plates. Thermal insulation efficiency in the building can be enhanced by the composite PCMs utilization as the composition of the building materials.