Ni-45.5Al-9Mo (mole fraction,%) alloy was directionally solidified with a constant temperature gradient (GL=334 K/cm) and growth rates ranging from 2 to 300 μm/s using a Bridgman type crystal growing facility wit...Ni-45.5Al-9Mo (mole fraction,%) alloy was directionally solidified with a constant temperature gradient (GL=334 K/cm) and growth rates ranging from 2 to 300 μm/s using a Bridgman type crystal growing facility with liquid metal cooling (LMC) technique. The effect of growth rate (v) on the solidified microstructures such as rod spacing (λ), rod size (d) and rod volume fraction was experimentally investigated. Two types of the solidified interfaces, planar and cellular, were identified. On the condition of both planar and cellular eutectic microstructures, the relationships between λ, d and v were given as: λv1/2=5.90 μm·μm1/2·s1/2 and dv1/2=2.18μm·μm1/2·s1/2, respectively. It was observed that the volume fraction of Mo phase could be adjusted in a certain range. The variation of phase volume fraction was attributed to undercooling increase and the growth characteristics of the individual constituent phases during the eutectic growth.展开更多
Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. ...Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.展开更多
The slow degration of iron limits its bone implant application.The solid solution of Zn in Fe is expected to accelerate the degradation.In this work,mechanical alloying(MA)was used to prepare Fe-Zn powder with supersa...The slow degration of iron limits its bone implant application.The solid solution of Zn in Fe is expected to accelerate the degradation.In this work,mechanical alloying(MA)was used to prepare Fe-Zn powder with supersaturated solid solution.MA significantly decreased the lamellar spacing between particles,thus reducing the diffusion distance of solution atoms.Moreover,it caused a number of crystalline defects,which further promoted the solution diffusion.Subsequently,the MA-processed powder was consolidated into Fe-Zn part by laser sintering,which involved a partial melting/rapid solidification mechanism and retained the original supersaturated solid solution.Results proved that the Fe-Zn alloy became more susceptible with a lowered corrosion potential,and thereby an accelerated corrosion rate of(0.112±0.013)mm/year.Furthermore,it also exhibited favorable cell behavior.This work highlighted the advantage of MA combined with laser sintering for the preparation of Fe-Zn implant with improved degradation performance.展开更多
基金Project (51074128) supported by the National Natural Science Foundation of ChinaProject (2007ZF53067) supported by the Aeronautical Science Foundation of China+1 种基金Project (2010JM6002) supported by the Natural Science Foundation of Shaanxi Province of ChinaProjec t(2012NCL004) supported by the Innovation Foundation of Inner Mongolia University of Science and Technology
文摘Ni-45.5Al-9Mo (mole fraction,%) alloy was directionally solidified with a constant temperature gradient (GL=334 K/cm) and growth rates ranging from 2 to 300 μm/s using a Bridgman type crystal growing facility with liquid metal cooling (LMC) technique. The effect of growth rate (v) on the solidified microstructures such as rod spacing (λ), rod size (d) and rod volume fraction was experimentally investigated. Two types of the solidified interfaces, planar and cellular, were identified. On the condition of both planar and cellular eutectic microstructures, the relationships between λ, d and v were given as: λv1/2=5.90 μm·μm1/2·s1/2 and dv1/2=2.18μm·μm1/2·s1/2, respectively. It was observed that the volume fraction of Mo phase could be adjusted in a certain range. The variation of phase volume fraction was attributed to undercooling increase and the growth characteristics of the individual constituent phases during the eutectic growth.
基金Project (B2011203074) supported by the Natural Science Foundation of Hebei Province, ChinaProject (201101A129) supported by the Technology Research and Development Program of Qinhuangdao, Hebei Province, China
文摘Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.
基金Projects(51935014,82072084,81871498)supported by the Natural Science Foundation of ChinaProjects(20192ACB20005,2020ACB214004)supported by the Jiangxi Provincial Natural Science Foundation of China+4 种基金Project(20201BBE51012)supported by the Provincial Key R&D Projects of Jiangxi Province,ChinaProject(2018)supported by the Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme,ChinaProject(2017RS3008)supported by Hunan Provincial Science and Technology Plan,ChinaProject supported by the Open Research Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology,ChinaProject(2020M682114)China Postdoctoral Science Foundation。
文摘The slow degration of iron limits its bone implant application.The solid solution of Zn in Fe is expected to accelerate the degradation.In this work,mechanical alloying(MA)was used to prepare Fe-Zn powder with supersaturated solid solution.MA significantly decreased the lamellar spacing between particles,thus reducing the diffusion distance of solution atoms.Moreover,it caused a number of crystalline defects,which further promoted the solution diffusion.Subsequently,the MA-processed powder was consolidated into Fe-Zn part by laser sintering,which involved a partial melting/rapid solidification mechanism and retained the original supersaturated solid solution.Results proved that the Fe-Zn alloy became more susceptible with a lowered corrosion potential,and thereby an accelerated corrosion rate of(0.112±0.013)mm/year.Furthermore,it also exhibited favorable cell behavior.This work highlighted the advantage of MA combined with laser sintering for the preparation of Fe-Zn implant with improved degradation performance.