期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GRA—BP神经网络的固体废弃物充填体强度预测 被引量:4
1
作者 刘团结 赵象卓 +2 位作者 韩永亮 李云鹏 陈希 《煤矿安全》 CAS 北大核心 2021年第9期231-238,共8页
为解决煤矿采空区充填材料不足和固体废弃物引起的生态环境问题,研究分析了膏体充填体强度的影响因素,采用正交试验测定了充填体样本强度,通过灰关联分析法确定了各影响因素与充填体强度之间的关联度,用改进的BP神经网络建立了以固体废... 为解决煤矿采空区充填材料不足和固体废弃物引起的生态环境问题,研究分析了膏体充填体强度的影响因素,采用正交试验测定了充填体样本强度,通过灰关联分析法确定了各影响因素与充填体强度之间的关联度,用改进的BP神经网络建立了以固体废弃物膏体充填体强度影响因素为输入层节点,充填体强度为输出层节点的强度预测模型;基于正交试验获得的强度试验数据作为网络的训练样本和测试样本,通过对建立的网络进行仿真模拟,检验了网络数据拟合能力和泛化能力。检验结果表明:建立的预测模型收敛速度快而且精度高,网络预测精度达到了93.75%,能够实现对充填体强度的准确预测。 展开更多
关键词 固体废弃物充填体 正交试验 GRA BP神经网络 强度预测 材料 开采
下载PDF
固体废弃物膏体充填料浆质量的神经网络研究 被引量:6
2
作者 何荣军 张丽 +1 位作者 周华强 武龙飞 《采矿与安全工程学报》 EI 北大核心 2008年第3期352-356,共5页
固体废弃物膏体充填在我国煤炭系统是一种新的胶结充填模式.充填料浆质量的研究至关重要.它是一典型的多输入、多输出、非线性的模糊模型.一方面,运用神经网络结合遗传算法构造了膏体充填料浆质量的隐式模型,建立该模型的方法以神经网... 固体废弃物膏体充填在我国煤炭系统是一种新的胶结充填模式.充填料浆质量的研究至关重要.它是一典型的多输入、多输出、非线性的模糊模型.一方面,运用神经网络结合遗传算法构造了膏体充填料浆质量的隐式模型,建立该模型的方法以神经网络为基础,用遗传算法来学习神经网络的权系数,既保留了遗传算法的强全局随机搜索能力,又具有神经网络的鲁棒性和自学习能力.该模型具有较强预测能力,为优化固体废弃物膏体充填料浆质量的影响因素提供了理论依据.另一方面,利用已训练好的膏体充填料浆质量模型获得遗传算法,对充填料浆质量的影响因素进行优化,该法在配比设计时,可在较少的试验次数下获得较好的配比. 展开更多
关键词 固体废弃物 料浆质量 神经网络 遗传算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部