The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy cont...The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.展开更多
A fully mechanized coal mining with backfilling (FMCMB) provides advantages of safety and efficiency for coal mining under buildings, railways, and water bodies. According to the field geological conditions, we analyz...A fully mechanized coal mining with backfilling (FMCMB) provides advantages of safety and efficiency for coal mining under buildings, railways, and water bodies. According to the field geological conditions, we analyzed the controlling effect of strata movement by the waste and fly ash backfilling in FMCMB face. Based on the key strata theory, we established the equivalent mining thickness model, and analyzed the action of the bulk factor of backfilling body to the equivalent mining thickness. In addition, we numerically simulated the controlling function of the strata movement by backfilling bodies with differ- ent strength. And the numerical simulation result show that the deformation of stratum and the subsi- dence of surface can be controlled by FMCMB. The result provides references to the effective execution of fully mechanized coal mining with solid waste backfilling in goaf.展开更多
文摘The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.
基金provided by the National Natural Science Foundation of China(Nos. 50834004 and 51074165)
文摘A fully mechanized coal mining with backfilling (FMCMB) provides advantages of safety and efficiency for coal mining under buildings, railways, and water bodies. According to the field geological conditions, we analyzed the controlling effect of strata movement by the waste and fly ash backfilling in FMCMB face. Based on the key strata theory, we established the equivalent mining thickness model, and analyzed the action of the bulk factor of backfilling body to the equivalent mining thickness. In addition, we numerically simulated the controlling function of the strata movement by backfilling bodies with differ- ent strength. And the numerical simulation result show that the deformation of stratum and the subsi- dence of surface can be controlled by FMCMB. The result provides references to the effective execution of fully mechanized coal mining with solid waste backfilling in goaf.