We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to ge...We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.展开更多
The poisoning effect of CO2 on the oxygen surface exchange kinetics of BSCF (Ba0.5 Sr0.5 Co0.8 Feo.2O3_δ) is investigated with a novel pulse isotopic exchange technique. The surface exchange rate of BSCF severely d...The poisoning effect of CO2 on the oxygen surface exchange kinetics of BSCF (Ba0.5 Sr0.5 Co0.8 Feo.2O3_δ) is investigated with a novel pulse isotopic exchange technique. The surface exchange rate of BSCF severely decreases after in situ exposure to CO2, which is ascribed to carbonate formation on the material surface. The detrimental effect of CO2 starts at a low temperature of 375 ℃ and concentration as low as 1%, and becomes more pro- nounced at higher temperatures. Degradation of the surface exchange kinetics is associated with a rapid loss of oxygen permeation performance of BSCF in CO2.展开更多
The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel ce...The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel cells (SOFCs). We report the rational design of a very active Ni doped La0.6Sr0.4FeO3‐δ(LSFN) electrode for hydrocarbon fuel SOFCs. Homogeneously dispersed Ni‐Fe alloy nanoparticles were in situ extruded onto the surface of the LSFN particles during the operation of the cell. Sym‐metric SOFC single cells were prepared by impregnating a LSFN precursor solution onto a YSZ (yt‐tria stabilized zirconia) monolithic cell with a subsequent heat treatment. The open circuit voltage of the LSFN symmetric cell reached 1.18 and 1.0 V in humidified C3H8 and CH4 at 750??, respective‐ly. The peak power densities of the cells were 400 and 230 mW/cm2 in humidified C3H8 and CH4, respectively. The electrode showed good stability in long term testing, which revealed LSFN has good catalytic activity for hydrocarbon fuel oxidation.展开更多
A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate t...A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm^2 when it was fed with H2 fuel at 700 ℃, but the power density increased to 400 mW/cm^2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 ℃. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.展开更多
Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and ...Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.展开更多
La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ)(LSCF) anodes were infiltrated by Gd(0.2)Ce(0.8)O(1.9)GDC) nanoparticles to improve the oxygen evolution reaction(OER) performance of solid oxide electrolysis ce...La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ)(LSCF) anodes were infiltrated by Gd(0.2)Ce(0.8)O(1.9)GDC) nanoparticles to improve the oxygen evolution reaction(OER) performance of solid oxide electrolysis cells(SOECs) in CO2 electroreduction. The effect of GDC loading was investigated, and 10 wt% GDC nanoparticle infiltration of the LSCF(10 GDC/LSCF) anode results in the highest OER performance. Electrochemical impedance spectra measurements indicate that the infiltration by GDC nanoparticles greatly decreases the polarization resistance of the SOECs with the 10 GDC/LSCF anodes. The following distribution of relaxation time analysis suggests that four individual electrode processes are involved in the OER and that all of them are accelerated on the 10 GDC/LSCF anode. Three phase boundaries, surface oxygen vacancies, and bulk oxygen mobility increased, based on scanning electron microscopy and temperature-programmed desorption of O2 characterizations, and contributed to the enhancement of the four electrode processes of the OER and electrochemical performance of SOECs.展开更多
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa...A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.展开更多
Two anode catalysts with Pt, MoS2 and composite metal sulfides (MoS2+NiS), are investigated for electrochemical oxidation of hydrogen sulfide in solid oxide fuel cell (SOFC) at temperatures 750-850℃. The catalysts co...Two anode catalysts with Pt, MoS2 and composite metal sulfides (MoS2+NiS), are investigated for electrochemical oxidation of hydrogen sulfide in solid oxide fuel cell (SOFC) at temperatures 750-850℃. The catalysts comprising MoS2 and MoSa+NiS exhibited good electrical conductivity and catalytic activity. MoS2 and composite catalysts were found to be more active than Pt, a widely used catalyst for high temperature H2S/O2 fuel cell at 750-850℃. However, MoS2 itself sublimes above 450℃. In contrast, composite catalysts containing both Mo and transition metal (Ni) are shown to be stable and effective in promoting the oxidation of H2S in SOFC up to 850℃. However, electric contact is poor between the platinum current collecting layer and the composite metal sulfide layer, so that the cell performance becomes worse. This problem is overcome by adding conductive Ag powder into the anode layer (forming MoS2+NiS+Ag anode material) to increase anode electrical conductance instead of applying a thin layer of platinum on the top of anode.展开更多
The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis...The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia.展开更多
An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), ...An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.95M0.05O3-α, (M=Yb, Y) cells.展开更多
Feasible construction of cathode materials with highly dispersed active sites can extend the tri‐ple‐phase boundaries,and therefore leading to enhanced electrode kinetics for CO_(2) electrolysis in solid oxide elect...Feasible construction of cathode materials with highly dispersed active sites can extend the tri‐ple‐phase boundaries,and therefore leading to enhanced electrode kinetics for CO_(2) electrolysis in solid oxide electrolysis cell(SOEC).Herein,highly dispersed nickel species with low loading(1.0 wt%)were trapped within the La_(0.8)Sr_(0.2)FeO_(3)–δ‐Ce_(0.8)Sm_(0.2)O_(2)–δvia a facial mechanical milling ap‐proach,which demonstrated excellent CO_(2) electrolysis performance.The highly dispersed nickel species can significantly alter the electronic structures of the LSF‐SDC without affecting its porous network and facilitate oxygen vacancy formation,thus greatly promote the CO_(2) electrolysis perfor‐mance.The highest current density of 1.53 A·cm^(-2) could be achieved when operated under 800℃ at 1.6 V,which is about 91%higher than the LSF‐SDC counterpart.展开更多
Solid oxide fuel cells(SOFCs)are regarded to be a key clean energy system to convert chemical energy(e.g.H_(2) and O_(2))into electrical energy with high efficiency,low carbon footprint,and fuel flexibility.The electr...Solid oxide fuel cells(SOFCs)are regarded to be a key clean energy system to convert chemical energy(e.g.H_(2) and O_(2))into electrical energy with high efficiency,low carbon footprint,and fuel flexibility.The electrolyte,typically doped zirconia,is the"state of the heart"of the fuel cell technologies,determining the performance and the operating temperature of the overall cells.Yttria stabilized zirconia(YSZ)have been widely used in SOFC due to its excellent oxide ion conductivity at high temperature.The composition and temperature dependence of the conductivity has been hotly studied in experiment and,more recently,by theoretical simulations.The characterization of the atomic structure for the mixed oxide system with different compositions is the key for elucidating the conductivity behavior,which,however,is of great challenge to both experiment and theory.This review presents recent theoretical progress on the structure and conductivity of YSZ electrolyte.We compare different theoretical methods and their results,outlining the merits and deficiencies of the methods.We highlight the recent results achieved by using stochastic surface walking global optimization with global neural network potential(SSW-NN)method,which appear to agree with available experimental data.The advent of machine-learning atomic simulation provides an affordable,efficient and accurate way to understand the complex material phenomena as encountered in solid electrolyte.The future research directions for design better electrolytes are also discussed.展开更多
High-temperature CO_(2)reduction reaction(HT-CO_(2)RR)in solid oxide electrochemical cells(SOECs)features near-unity selectivity,high energy efficiency,and industrial relevant current density for the production of CO,...High-temperature CO_(2)reduction reaction(HT-CO_(2)RR)in solid oxide electrochemical cells(SOECs)features near-unity selectivity,high energy efficiency,and industrial relevant current density for the production of CO,a widely-utilized“building block”in today’s chemical industry.Thus,it offers an intriguing and promising means to radically change the way of chemical manufacturing and achieve carbon neutrality using renewable energy sources,CO_(2),and water.Albeit with the great potential of HT-CO_(2)RR,this carbon utilization approach,unfortunately,has been suffering coke formation that is seriously detrimental to its energy efficiency and operating lifetime.In recent years,much effort has been added to understanding the mechanism of coke formation,managing reaction conditions to mitigate coke formation,and devising coke-formation-free electrode materials.These investigations have substantially advanced the HT-CO_(2)RR toward a practical industrial technology,but the resulting coke formation prevention strategies compromise activity and energy efficiency.Future research may target exploiting the control over both catalyst design and system design to gain selectivity,energy efficiency,and stability synchronously.Therefore,this perspective overviews the progress of research on coke formation in HT-CO_(2)RR,and elaborates on possible future directions that may accelerate its practical implementation at a large scale.展开更多
The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transp...The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transportation, and the microstructure characteristics of the electrode. The efficient thickness, which is defined as the electrode thickness corresponding to the minimum electrode polarization resistance, is formulated as a function of charge transfer resistivity, effective resistivity to ion and electron transport, and three-phase boundary length per unit volume. The model prediction is compared with the experimental reports to check the validity. Simulation is performed to show the effect of microstructure, intrinsic material properties, and electrode reaction mechanism on the efficient thickness. The results suggest that when an electrode is fabricated, its thickness should be controlled regarding its composition, particle size of its components, the intrinsic ionic and electronic conductivities,and its reaction mechanisms as well as the expected operation temperatures. The sensitivity of electrode polarization resistance to its thickness is also discussed.展开更多
The solid oxide fuel cell (SOFC) is a nonlinear system that is hard to model by conventional methods. So far,most existing models are based on conversion laws,which are too complicated to be applied to design a contro...The solid oxide fuel cell (SOFC) is a nonlinear system that is hard to model by conventional methods. So far,most existing models are based on conversion laws,which are too complicated to be applied to design a control system. To facilitate a valid control strategy design,this paper tries to avoid the internal complexities and presents a modelling study of SOFC per-formance by using a radial basis function (RBF) neural network based on a genetic algorithm (GA). During the process of mod-elling,the GA aims to optimize the parameters of RBF neural networks and the optimum values are regarded as the initial values of the RBF neural network parameters. The validity and accuracy of modelling are tested by simulations,whose results reveal that it is feasible to establish the model of SOFC stack by using RBF neural networks identification based on the GA. Furthermore,it is possible to design an online controller of a SOFC stack based on this GA-RBF neural network identification model.展开更多
This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed...This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed based on mass and energy balances, and electrochemical principles. Further, a solution strategy is presented to solve the model, and the International Energy Agency (IEA) benchmark test is used to validate the model. Then, through model-based simulations, the steady-state performance of a co-flow planar DIR-SOFC under specified initial operating conditions and its dynamic response to introduced operating parameter disturbances are studied. The dynamic responses of important SOFC variables, such as cell temperature, current density, and cell voltage are all investigated when the SOFC is subjected to the step-changes in various operating parameters including both the load current and the inlet fuel and air flow rates. The results indicate that the rapid dynamics of the current density and the cell voltage are mainly influenced by the gas composition, particularly the H2 molar fraction in anode gas channels, while their slow dynamics are both dominated by the SOLID (including the PEN and interconnects) temperature. As the load current increases, the SOLID temperature and the maximum SOLID temperature gradient both increase, and thereby, the cell breakdown is apt to occur because of excessive thermal stresses. Changing the inlet fuel flow rate might lead to the change in the anode gas composition and the consequent change in the current density distribution and cell voltage. The inlet air flow rate has a great impact on the cell temperature distribution along the cell, and thus, is a suitable manipulated variable to control the cell temperature.展开更多
文摘We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.
基金This work was supported by the National Natural Science Foundation of China (No.U1432108), the Fundamental Research Funds for the Central Universi- ties (No.XDJK2015C002 and No.WK2320000021), Provincial Natural Science Foundation (No.1408085ME85), Scientific Research Founda- tion for the Returned Overseas Chinese Scholars, State Education Ministry (No.WF2320000005), and the Opening Project of CAS Key Laboratory of Materials for Energy Conversion (No.KF2014003). Professor Henny J. M. Bouwmeester of University at Twente is deeply appreciated for fruitful discussions.
文摘The poisoning effect of CO2 on the oxygen surface exchange kinetics of BSCF (Ba0.5 Sr0.5 Co0.8 Feo.2O3_δ) is investigated with a novel pulse isotopic exchange technique. The surface exchange rate of BSCF severely decreases after in situ exposure to CO2, which is ascribed to carbonate formation on the material surface. The detrimental effect of CO2 starts at a low temperature of 375 ℃ and concentration as low as 1%, and becomes more pro- nounced at higher temperatures. Degradation of the surface exchange kinetics is associated with a rapid loss of oxygen permeation performance of BSCF in CO2.
基金supported by the National Natural Science Foundation of China (51372271,51172275)the National Basic Research Program of China (973 Program,2012CB215402)~~
文摘The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel cells (SOFCs). We report the rational design of a very active Ni doped La0.6Sr0.4FeO3‐δ(LSFN) electrode for hydrocarbon fuel SOFCs. Homogeneously dispersed Ni‐Fe alloy nanoparticles were in situ extruded onto the surface of the LSFN particles during the operation of the cell. Sym‐metric SOFC single cells were prepared by impregnating a LSFN precursor solution onto a YSZ (yt‐tria stabilized zirconia) monolithic cell with a subsequent heat treatment. The open circuit voltage of the LSFN symmetric cell reached 1.18 and 1.0 V in humidified C3H8 and CH4 at 750??, respective‐ly. The peak power densities of the cells were 400 and 230 mW/cm2 in humidified C3H8 and CH4, respectively. The electrode showed good stability in long term testing, which revealed LSFN has good catalytic activity for hydrocarbon fuel oxidation.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20871110 and No.50730002). The authors express their appreciation to Xin-bo Lii, Qingdao Tianhe Graphite Co. Ltd. for supporting appropriate pore former graphite.
文摘A porous NiO/yttria-stabilized zirconia was prepared by gel casting technique. anode substrate for tubular solid oxide fuel cells Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm^2 when it was fed with H2 fuel at 700 ℃, but the power density increased to 400 mW/cm^2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 ℃. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.21303037), China Postdoctoral Science Foundation (No.2013M53150), and tile Fundamental Research Funds for the Central Univcrsitics (No.2012HGZY0001).
文摘Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.
基金This work was supported by the National Key R&D Program of China(2017YFA0700102)the National Natural Science Foundation of China(21703237,21573222,91545202)+1 种基金Dalian Institute of Chemical Physics(DICP DMTO201702)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020200)and CAS Youth Innovation Promotion(2015145)~~
文摘La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ)(LSCF) anodes were infiltrated by Gd(0.2)Ce(0.8)O(1.9)GDC) nanoparticles to improve the oxygen evolution reaction(OER) performance of solid oxide electrolysis cells(SOECs) in CO2 electroreduction. The effect of GDC loading was investigated, and 10 wt% GDC nanoparticle infiltration of the LSCF(10 GDC/LSCF) anode results in the highest OER performance. Electrochemical impedance spectra measurements indicate that the infiltration by GDC nanoparticles greatly decreases the polarization resistance of the SOECs with the 10 GDC/LSCF anodes. The following distribution of relaxation time analysis suggests that four individual electrode processes are involved in the OER and that all of them are accelerated on the 10 GDC/LSCF anode. Three phase boundaries, surface oxygen vacancies, and bulk oxygen mobility increased, based on scanning electron microscopy and temperature-programmed desorption of O2 characterizations, and contributed to the enhancement of the four electrode processes of the OER and electrochemical performance of SOECs.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 031424).
文摘A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.
文摘Two anode catalysts with Pt, MoS2 and composite metal sulfides (MoS2+NiS), are investigated for electrochemical oxidation of hydrogen sulfide in solid oxide fuel cell (SOFC) at temperatures 750-850℃. The catalysts comprising MoS2 and MoSa+NiS exhibited good electrical conductivity and catalytic activity. MoS2 and composite catalysts were found to be more active than Pt, a widely used catalyst for high temperature H2S/O2 fuel cell at 750-850℃. However, MoS2 itself sublimes above 450℃. In contrast, composite catalysts containing both Mo and transition metal (Ni) are shown to be stable and effective in promoting the oxidation of H2S in SOFC up to 850℃. However, electric contact is poor between the platinum current collecting layer and the composite metal sulfide layer, so that the cell performance becomes worse. This problem is overcome by adding conductive Ag powder into the anode layer (forming MoS2+NiS+Ag anode material) to increase anode electrical conductance instead of applying a thin layer of platinum on the top of anode.
基金V. ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.50372066 and No.50332040).
文摘The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia.
文摘An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.95M0.05O3-α, (M=Yb, Y) cells.
文摘Feasible construction of cathode materials with highly dispersed active sites can extend the tri‐ple‐phase boundaries,and therefore leading to enhanced electrode kinetics for CO_(2) electrolysis in solid oxide electrolysis cell(SOEC).Herein,highly dispersed nickel species with low loading(1.0 wt%)were trapped within the La_(0.8)Sr_(0.2)FeO_(3)–δ‐Ce_(0.8)Sm_(0.2)O_(2)–δvia a facial mechanical milling ap‐proach,which demonstrated excellent CO_(2) electrolysis performance.The highly dispersed nickel species can significantly alter the electronic structures of the LSF‐SDC without affecting its porous network and facilitate oxygen vacancy formation,thus greatly promote the CO_(2) electrolysis perfor‐mance.The highest current density of 1.53 A·cm^(-2) could be achieved when operated under 800℃ at 1.6 V,which is about 91%higher than the LSF‐SDC counterpart.
基金supported by Shanghai Sailing Program(No.19YF1442800)the National Key Research and Development Program of China(No.2018YFA0208600)the National Natural Science Foundation of China(No.22003040,No.22033003,No.91945301,No.91745201,and No.21533001).
文摘Solid oxide fuel cells(SOFCs)are regarded to be a key clean energy system to convert chemical energy(e.g.H_(2) and O_(2))into electrical energy with high efficiency,low carbon footprint,and fuel flexibility.The electrolyte,typically doped zirconia,is the"state of the heart"of the fuel cell technologies,determining the performance and the operating temperature of the overall cells.Yttria stabilized zirconia(YSZ)have been widely used in SOFC due to its excellent oxide ion conductivity at high temperature.The composition and temperature dependence of the conductivity has been hotly studied in experiment and,more recently,by theoretical simulations.The characterization of the atomic structure for the mixed oxide system with different compositions is the key for elucidating the conductivity behavior,which,however,is of great challenge to both experiment and theory.This review presents recent theoretical progress on the structure and conductivity of YSZ electrolyte.We compare different theoretical methods and their results,outlining the merits and deficiencies of the methods.We highlight the recent results achieved by using stochastic surface walking global optimization with global neural network potential(SSW-NN)method,which appear to agree with available experimental data.The advent of machine-learning atomic simulation provides an affordable,efficient and accurate way to understand the complex material phenomena as encountered in solid electrolyte.The future research directions for design better electrolytes are also discussed.
文摘High-temperature CO_(2)reduction reaction(HT-CO_(2)RR)in solid oxide electrochemical cells(SOECs)features near-unity selectivity,high energy efficiency,and industrial relevant current density for the production of CO,a widely-utilized“building block”in today’s chemical industry.Thus,it offers an intriguing and promising means to radically change the way of chemical manufacturing and achieve carbon neutrality using renewable energy sources,CO_(2),and water.Albeit with the great potential of HT-CO_(2)RR,this carbon utilization approach,unfortunately,has been suffering coke formation that is seriously detrimental to its energy efficiency and operating lifetime.In recent years,much effort has been added to understanding the mechanism of coke formation,managing reaction conditions to mitigate coke formation,and devising coke-formation-free electrode materials.These investigations have substantially advanced the HT-CO_(2)RR toward a practical industrial technology,but the resulting coke formation prevention strategies compromise activity and energy efficiency.Future research may target exploiting the control over both catalyst design and system design to gain selectivity,energy efficiency,and stability synchronously.Therefore,this perspective overviews the progress of research on coke formation in HT-CO_(2)RR,and elaborates on possible future directions that may accelerate its practical implementation at a large scale.
文摘The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transportation, and the microstructure characteristics of the electrode. The efficient thickness, which is defined as the electrode thickness corresponding to the minimum electrode polarization resistance, is formulated as a function of charge transfer resistivity, effective resistivity to ion and electron transport, and three-phase boundary length per unit volume. The model prediction is compared with the experimental reports to check the validity. Simulation is performed to show the effect of microstructure, intrinsic material properties, and electrode reaction mechanism on the efficient thickness. The results suggest that when an electrode is fabricated, its thickness should be controlled regarding its composition, particle size of its components, the intrinsic ionic and electronic conductivities,and its reaction mechanisms as well as the expected operation temperatures. The sensitivity of electrode polarization resistance to its thickness is also discussed.
文摘The solid oxide fuel cell (SOFC) is a nonlinear system that is hard to model by conventional methods. So far,most existing models are based on conversion laws,which are too complicated to be applied to design a control system. To facilitate a valid control strategy design,this paper tries to avoid the internal complexities and presents a modelling study of SOFC per-formance by using a radial basis function (RBF) neural network based on a genetic algorithm (GA). During the process of mod-elling,the GA aims to optimize the parameters of RBF neural networks and the optimum values are regarded as the initial values of the RBF neural network parameters. The validity and accuracy of modelling are tested by simulations,whose results reveal that it is feasible to establish the model of SOFC stack by using RBF neural networks identification based on the GA. Furthermore,it is possible to design an online controller of a SOFC stack based on this GA-RBF neural network identification model.
基金Supported by the National High Technology Research and Development Program of China (2006AA05Z148)
文摘This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed based on mass and energy balances, and electrochemical principles. Further, a solution strategy is presented to solve the model, and the International Energy Agency (IEA) benchmark test is used to validate the model. Then, through model-based simulations, the steady-state performance of a co-flow planar DIR-SOFC under specified initial operating conditions and its dynamic response to introduced operating parameter disturbances are studied. The dynamic responses of important SOFC variables, such as cell temperature, current density, and cell voltage are all investigated when the SOFC is subjected to the step-changes in various operating parameters including both the load current and the inlet fuel and air flow rates. The results indicate that the rapid dynamics of the current density and the cell voltage are mainly influenced by the gas composition, particularly the H2 molar fraction in anode gas channels, while their slow dynamics are both dominated by the SOLID (including the PEN and interconnects) temperature. As the load current increases, the SOLID temperature and the maximum SOLID temperature gradient both increase, and thereby, the cell breakdown is apt to occur because of excessive thermal stresses. Changing the inlet fuel flow rate might lead to the change in the anode gas composition and the consequent change in the current density distribution and cell voltage. The inlet air flow rate has a great impact on the cell temperature distribution along the cell, and thus, is a suitable manipulated variable to control the cell temperature.