This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,In...This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,Indiset 620 combustion analyzer made by AVL,was used to make a real-time survey on the cylinder pressure,the fuel ignition moment,and establish a relation between the change trend of temperature in cylinder and the crank angle.For the engine burning heavy oil and heavy oil mixed with additives,combustion analysis software Indicom and Concerto were used to analyze its combustion process and emission conditions.Experimental investigation shows that nano-sized complex oxide can improve the performance of diesel engine fueled with heavy oil,and reduce the emission of pollutants like NOx and CO,comparing it with the pure heavy oil.According to the consequences of this experiment,the additives improve the overall performance in the use of heavy oil.展开更多
H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water split...H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.展开更多
Gas-phase dehydration of glycerol to produce acmlein was investigated over commercial catalysts based on γ-Al2O3, viz. A-64, A-56,1-62, AP-10, AP-56, AP-64 and KR-104. To understand the effect of Cl anions, HCl-impre...Gas-phase dehydration of glycerol to produce acmlein was investigated over commercial catalysts based on γ-Al2O3, viz. A-64, A-56,1-62, AP-10, AP-56, AP-64 and KR-104. To understand the effect of Cl anions, HCl-impregnated sup- ports have been investigated in the dehydration reaction of glycerol at 375 ℃. For comparison, various H-zeolites were also examined. It was found that the glycerol conversion over the solid acid catalysts was strongly dependent on their acidity and surface area. And the relationship between the catalytic activity and the acidity of the catalysts was discussed. The outstanding properties of Pt/γ-Al2O3 catalyst systems for the dehydration of glycerol were revealed. Pt/γ-Al2O3 catalyst (AP-64) showed the highest catalytic activity after 50 h of reaction with an acrolein selectivity of 65% at a conversion of glycerol of 90%. Based on these results, catalysts based on γ-Al2O3 appear to be most promising for gas phase dehydration of glycerol.展开更多
Laccase was immobilized on the ceramic-chitosan composite support by using glutaraldehyde as the cross-linking reagent. The immobilization conditions and characterization of the immobilized enzyme were investigated. T...Laccase was immobilized on the ceramic-chitosan composite support by using glutaraldehyde as the cross-linking reagent. The immobilization conditions and characterization of the immobilized enzyme were investigated. The immobilization of laccase was successfully realized when 3.0 mL of 1.25 mg/mL of laccase at a pH value of 4.0 reacted with 0.15 g of ceramic-chitosan composite support(CCCS) at 4 ℃ for 24 h. The immobilized enzyme exhibited a maximum activity at pH 3.0. The optimal temperatures for immobilized enzyme were 25 ℃ and 50 ℃. The K_m value of immobilized laccase for ABTS was 66.64 μmol/L at a pH value of 3.0 at 25 ℃. Compared with free laccase, the thermal, operating and storage stability of immobilized laccase was improved after the immobilization.展开更多
Previous study has shown that 10-hydroxycamptothecin(HCPT) has well-established pharmacological effects in vitro.However,its in vivo bioavailability is very poor due to various problems,which severely restricts its ...Previous study has shown that 10-hydroxycamptothecin(HCPT) has well-established pharmacological effects in vitro.However,its in vivo bioavailability is very poor due to various problems,which severely restricts its clinical applications.In the present study,phospholipid complex(PC) technology was employed to improve the solubility and bioavailability of HCPT.XRD data confirmed the formation of HCPT-PC.However,our previously prepared HCPT-PC is too sticky,which may result in the slow dissolution rate and negative effects on its absorption.Therefore,we prepared HCPT-PC-solid dispersion(HCPT-PC-SD)and lipid-based formulations of HCPT-PC through simple preparation process.The results showed that the dissolution rate of HCPT-PC was effectively improved by solid dispersion technology,which reached 91.73%in 45 min.Pharmacokinetic study revealed that the AUC_(0-t) of HCPT-PC-SD and HCPT-PC lipid-based formulations was effectively further increased compared with HCPT-PC.Moreover,we found that the combination of SD technology and lipid-base formulations could be a promising drug-delivery system to improve the oral bioavailability of HCPT-PC.In addition,we showed that the bioavailability of HCPT-PC lipid-base formulations was even greater than that of HCPT-PC-SD.In particular,lipid-base formulations could be prepared just by a simple method,suggesting its feasibility of industrialization.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities of China(DUT11NY09)
文摘This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,Indiset 620 combustion analyzer made by AVL,was used to make a real-time survey on the cylinder pressure,the fuel ignition moment,and establish a relation between the change trend of temperature in cylinder and the crank angle.For the engine burning heavy oil and heavy oil mixed with additives,combustion analysis software Indicom and Concerto were used to analyze its combustion process and emission conditions.Experimental investigation shows that nano-sized complex oxide can improve the performance of diesel engine fueled with heavy oil,and reduce the emission of pollutants like NOx and CO,comparing it with the pure heavy oil.According to the consequences of this experiment,the additives improve the overall performance in the use of heavy oil.
文摘H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.
基金supported by the Ministry of Education and Science of the Russian Federation (contract № 02.G25.31.0119)a project part of the state task in the field of scientific activity ( № 10.1686.2014/K)
文摘Gas-phase dehydration of glycerol to produce acmlein was investigated over commercial catalysts based on γ-Al2O3, viz. A-64, A-56,1-62, AP-10, AP-56, AP-64 and KR-104. To understand the effect of Cl anions, HCl-impregnated sup- ports have been investigated in the dehydration reaction of glycerol at 375 ℃. For comparison, various H-zeolites were also examined. It was found that the glycerol conversion over the solid acid catalysts was strongly dependent on their acidity and surface area. And the relationship between the catalytic activity and the acidity of the catalysts was discussed. The outstanding properties of Pt/γ-Al2O3 catalyst systems for the dehydration of glycerol were revealed. Pt/γ-Al2O3 catalyst (AP-64) showed the highest catalytic activity after 50 h of reaction with an acrolein selectivity of 65% at a conversion of glycerol of 90%. Based on these results, catalysts based on γ-Al2O3 appear to be most promising for gas phase dehydration of glycerol.
文摘Laccase was immobilized on the ceramic-chitosan composite support by using glutaraldehyde as the cross-linking reagent. The immobilization conditions and characterization of the immobilized enzyme were investigated. The immobilization of laccase was successfully realized when 3.0 mL of 1.25 mg/mL of laccase at a pH value of 4.0 reacted with 0.15 g of ceramic-chitosan composite support(CCCS) at 4 ℃ for 24 h. The immobilized enzyme exhibited a maximum activity at pH 3.0. The optimal temperatures for immobilized enzyme were 25 ℃ and 50 ℃. The K_m value of immobilized laccase for ABTS was 66.64 μmol/L at a pH value of 3.0 at 25 ℃. Compared with free laccase, the thermal, operating and storage stability of immobilized laccase was improved after the immobilization.
基金Science and Technology Department of Henan province Fund Project(Grant No.144300510019)
文摘Previous study has shown that 10-hydroxycamptothecin(HCPT) has well-established pharmacological effects in vitro.However,its in vivo bioavailability is very poor due to various problems,which severely restricts its clinical applications.In the present study,phospholipid complex(PC) technology was employed to improve the solubility and bioavailability of HCPT.XRD data confirmed the formation of HCPT-PC.However,our previously prepared HCPT-PC is too sticky,which may result in the slow dissolution rate and negative effects on its absorption.Therefore,we prepared HCPT-PC-solid dispersion(HCPT-PC-SD)and lipid-based formulations of HCPT-PC through simple preparation process.The results showed that the dissolution rate of HCPT-PC was effectively improved by solid dispersion technology,which reached 91.73%in 45 min.Pharmacokinetic study revealed that the AUC_(0-t) of HCPT-PC-SD and HCPT-PC lipid-based formulations was effectively further increased compared with HCPT-PC.Moreover,we found that the combination of SD technology and lipid-base formulations could be a promising drug-delivery system to improve the oral bioavailability of HCPT-PC.In addition,we showed that the bioavailability of HCPT-PC lipid-base formulations was even greater than that of HCPT-PC-SD.In particular,lipid-base formulations could be prepared just by a simple method,suggesting its feasibility of industrialization.