The starting characteristics of thermodynamic undersea vehicle systems are determined by the geometry, size and combustion area of solid propellants, which directly effect liquid propellant pipeline design. It is nece...The starting characteristics of thermodynamic undersea vehicle systems are determined by the geometry, size and combustion area of solid propellants, which directly effect liquid propellant pipeline design. It is necessary to establish accurate burning models for solid propellants. Based on combustion models using powder rings and two different solid ignition grains, namely star-shaped ignition grains and stuffed ignition grains, a mathematic model of the ignition process of the propulsion system was built. With the help of Matlab, a series of calculations were made to determine the effects of different grains on ignition characteristics. The results show that stuffed ignition grain is best suited to be the ignition grain of a thermodynamic undersea vehicle system.展开更多
The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis...The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia.展开更多
On the base of nonlinear liquidus and solidus,an extended model for dendrite growth in bulk undercooled melts was developed under local non-equilibrium conditions both at the interface and in the bulk liquid.In terms ...On the base of nonlinear liquidus and solidus,an extended model for dendrite growth in bulk undercooled melts was developed under local non-equilibrium conditions both at the interface and in the bulk liquid.In terms of thermodynamic calculations of the phase diagram,the model predictions are relatively realistic physically,since few fitting parameters are used in the model predictions.Adopting three characteristic velocities,i.e.the critical velocity of absolute solute stability(VC*),the velocity of maximal tip radius(VRm),and the velocity of bulk liquid diffusion(VD),a quantitative agreement is obtained between the model predictions and the experimental results in undercooled Ni-0.7%B and Ni-1%Zr(molar fraction) alloys,and the overall solidification process can be categorized.展开更多
Thermodynamic analyses in the literature have shown that solid oxide fuel cells(SOFCs) with proton conducting electrolyte(H-SOFC) exhibited higher performance than SOFC with oxygen ion conducting electrolyte(O-SOFC).H...Thermodynamic analyses in the literature have shown that solid oxide fuel cells(SOFCs) with proton conducting electrolyte(H-SOFC) exhibited higher performance than SOFC with oxygen ion conducting electrolyte(O-SOFC).However, these studies only consider H2 electrochemical oxidation and totally neglect the contribution of CO electrochemical oxidation in O-SOFC. In this short communication, a thermodynamic model is developed to compare the theoretically maximum efficiencies of H-SOFC and O-SOFC, considering the electrochemical oxidation of CO in O-SOFC anode. It is found that O-SOFC exhibits a higher maximum efficiency than H-SOFC due to the contribution from CO electrochemical oxidation, which is contrary to the common understanding of electrolyte effect on SOFC performance. The effects of operating temperature and fuel utilization factor on the theoretical efficiency of SOFC are also analyzed and discussed.展开更多
Steady-state model of a high-temperature solid oxide fuel cell (SOFC) is considered, which refers to constant chemical potentials of incoming hydrogen fuel and oxidant. Lowering of the cell voltage below its reversi...Steady-state model of a high-temperature solid oxide fuel cell (SOFC) is considered, which refers to constant chemical potentials of incoming hydrogen fuel and oxidant. Lowering of the cell voltage below its reversible value is attributed to polarizations and imperfect conversions of reactions. An imperfect power formula summarizes the effect of transport laws, irreversible polarizations and efficiency of power yield. Reversible electrochemical theory is extended to the case with dissipative chemical reactions; this case includes systems with incomplete conversions, characterized by "reduced affinities" and an idle run voltage. Efficiency drop is linked with thermodynamic and electrochemical irreversibilities expressed in terms of polarizations (activation, concentration and ohmic). Effect of incomplete conversions is modeled by assuming that substrates can be remained after the reaction and that side reactions may occur. Optimum and feasibility conditions are discussed for basic input parameters of the cell. Calculations of maximum power show that the data differ for power generated and consumed and depend on current intensity, number of mass transfer units, polarizations, electrode surface area, average chemical rate, etc.. These data provide bounds for SOFC energy generators, which are more exact and informative than reversible bounds for electrochemical transformation.展开更多
In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemica...In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.展开更多
A fundamental property of solid materials is their stress state. Stress state of a solid or thin film material has profound effects on its thermodynamic stability and physical and chemical properties. The classical me...A fundamental property of solid materials is their stress state. Stress state of a solid or thin film material has profound effects on its thermodynamic stability and physical and chemical properties. The classical mechanical stress (σ^M) originates from lat- tice strain (e), following Hooke's law: σ^M=Cε, where C is elastic constant matrix. Recently, a new concept of quantum electronic stress (o-QE) is introduced to elucidate the extrinsic electronic effects on the stress state of solids and thin films, which follows a quantum analog of classical Hooke's law: ~QE=E(An), where E is the deformation potential of electronic states and An is the variation of electron density. Here, we present mathematical derivation of both the classical and quantum Hooke's law from density functional theory. We further discuss the physical origin of quantum electronic stress, arising purely from electronic excitation and perturbation in the absence of lattice strain (g=0), and its relation to the degeneracy pressure of electrons in solid and their interaction with the lattice.展开更多
文摘The starting characteristics of thermodynamic undersea vehicle systems are determined by the geometry, size and combustion area of solid propellants, which directly effect liquid propellant pipeline design. It is necessary to establish accurate burning models for solid propellants. Based on combustion models using powder rings and two different solid ignition grains, namely star-shaped ignition grains and stuffed ignition grains, a mathematic model of the ignition process of the propulsion system was built. With the help of Matlab, a series of calculations were made to determine the effects of different grains on ignition characteristics. The results show that stuffed ignition grain is best suited to be the ignition grain of a thermodynamic undersea vehicle system.
基金V. ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.50372066 and No.50332040).
文摘The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia.
基金Projects(50501020, 50395103, 50431030) supported by the National Natural Science Foundation of ChinaProject(NCET-05-870) supported by Program for New Century Excellent Talents in Chinese UniversityProject(CX200706) supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘On the base of nonlinear liquidus and solidus,an extended model for dendrite growth in bulk undercooled melts was developed under local non-equilibrium conditions both at the interface and in the bulk liquid.In terms of thermodynamic calculations of the phase diagram,the model predictions are relatively realistic physically,since few fitting parameters are used in the model predictions.Adopting three characteristic velocities,i.e.the critical velocity of absolute solute stability(VC*),the velocity of maximal tip radius(VRm),and the velocity of bulk liquid diffusion(VD),a quantitative agreement is obtained between the model predictions and the experimental results in undercooled Ni-0.7%B and Ni-1%Zr(molar fraction) alloys,and the overall solidification process can be categorized.
基金Supported by Hong Kong Research Grant Council(PolyU 5238/11E)
文摘Thermodynamic analyses in the literature have shown that solid oxide fuel cells(SOFCs) with proton conducting electrolyte(H-SOFC) exhibited higher performance than SOFC with oxygen ion conducting electrolyte(O-SOFC).However, these studies only consider H2 electrochemical oxidation and totally neglect the contribution of CO electrochemical oxidation in O-SOFC. In this short communication, a thermodynamic model is developed to compare the theoretically maximum efficiencies of H-SOFC and O-SOFC, considering the electrochemical oxidation of CO in O-SOFC anode. It is found that O-SOFC exhibits a higher maximum efficiency than H-SOFC due to the contribution from CO electrochemical oxidation, which is contrary to the common understanding of electrolyte effect on SOFC performance. The effects of operating temperature and fuel utilization factor on the theoretical efficiency of SOFC are also analyzed and discussed.
文摘Steady-state model of a high-temperature solid oxide fuel cell (SOFC) is considered, which refers to constant chemical potentials of incoming hydrogen fuel and oxidant. Lowering of the cell voltage below its reversible value is attributed to polarizations and imperfect conversions of reactions. An imperfect power formula summarizes the effect of transport laws, irreversible polarizations and efficiency of power yield. Reversible electrochemical theory is extended to the case with dissipative chemical reactions; this case includes systems with incomplete conversions, characterized by "reduced affinities" and an idle run voltage. Efficiency drop is linked with thermodynamic and electrochemical irreversibilities expressed in terms of polarizations (activation, concentration and ohmic). Effect of incomplete conversions is modeled by assuming that substrates can be remained after the reaction and that side reactions may occur. Optimum and feasibility conditions are discussed for basic input parameters of the cell. Calculations of maximum power show that the data differ for power generated and consumed and depend on current intensity, number of mass transfer units, polarizations, electrode surface area, average chemical rate, etc.. These data provide bounds for SOFC energy generators, which are more exact and informative than reversible bounds for electrochemical transformation.
基金supported by the National Natural Science Foundation of China(Grant No.11572227)Shenzhen Municipal Government through the Fundamental Research Project(Grant No.JCYJ20170307151049286)
文摘In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.
基金supported by the DOE-BES program(Grant No.DE-04ER46148)NSF-MRSEC(Grant No.DMR-1121252)
文摘A fundamental property of solid materials is their stress state. Stress state of a solid or thin film material has profound effects on its thermodynamic stability and physical and chemical properties. The classical mechanical stress (σ^M) originates from lat- tice strain (e), following Hooke's law: σ^M=Cε, where C is elastic constant matrix. Recently, a new concept of quantum electronic stress (o-QE) is introduced to elucidate the extrinsic electronic effects on the stress state of solids and thin films, which follows a quantum analog of classical Hooke's law: ~QE=E(An), where E is the deformation potential of electronic states and An is the variation of electron density. Here, we present mathematical derivation of both the classical and quantum Hooke's law from density functional theory. We further discuss the physical origin of quantum electronic stress, arising purely from electronic excitation and perturbation in the absence of lattice strain (g=0), and its relation to the degeneracy pressure of electrons in solid and their interaction with the lattice.