To improve separation efficiency of the photogenerated electron-hole pairs,constructing a heterojunction is considered to be a promising strategy.However,the fabrication of heterojunction via a facile route to achieve...To improve separation efficiency of the photogenerated electron-hole pairs,constructing a heterojunction is considered to be a promising strategy.However,the fabrication of heterojunction via a facile route to achieve a substantial improvement in photocatalytic performance is still challenging.In this work,a well-designed nanosheet-based rodlike step-scheme(S-scheme)heterojunction Bi_(4)O_(5)I_(2)/Bi_(4)O_(5)Br_(2) with rich oxygen vacancies(OVs)(Bi_(4)O_(5)I_(2)/Bi_(4)O_(5)Br_(2)-OV)was easily synthesized by calcining BiOAc0.6Br0.2I0.2(Ac-=CH3 COO-)precursor.The as-prepared Bi4O5I2/Bi4O5Br2-OV exhibited excellent visible light photocatalytic performance towards antibiotic tetracycline(TC)and dye rhodamine B(Rh B)degradation and removal rate reached 90.2% and 97.0%within 120 min,respectively,which was higher than those of Bi4O5I2-OV(56.8% and 71.8%),Bi4O5Br2-OV(47.4%and 68.4%),solid solution BiOAc0.6Br0.2I0.2(67.0% and 84.0%)and Bi_(4)O_(5)I_(2)/Bi_(4)O_(5)Br_(2) with poor oxygen vacancies(Bi4O5I2/Bi4O5Br2-P)(30.6%and 40.4%).Owing to the release of heat and generation of reducing carbon during calcining the precursor with Ac-,it could not only reduce the generation temperature of Bi-rich bismuth oxyhalides,which thus decreased particle size and increased surface areas,but also introduce surface OVs,which could trap photoelectrons and inhibit the recombination of carriers.In addition,the calcination of single solid solution precursor benefited to the formation of well-alloyed interfaces with larger contact areas between 2D/2D nanosheet-like materials,which facilitates charge carriers transfer at the interfaces.The Bi4O5I2/Bi4O5Br2-OV also shows the desirable removal rate for TC and Rh B in actual wastewater or in the presence of some electrolytes.This study provides an effective and simple strategy for designing OVs modified Bi-rich oxyhalides heterojunctions.展开更多
The thermodynamic characterization as well as the rheological characterization of the A201 alloy were conducted.Thermodynamic simulations (CALPHAD method) and calorimetric experiments were performed to determine the s...The thermodynamic characterization as well as the rheological characterization of the A201 alloy were conducted.Thermodynamic simulations (CALPHAD method) and calorimetric experiments were performed to determine the solidus and liquidus temperatures, the melting range and the sensitivity of the solid fraction at the thixoforming temperatures.The rheology of aluminium alloy A201 was examined using a high temperature Searle rheometer.The flow behaviour was analyzed with concentric cylinders of graphite to avoid chemical interactions with the liquid or semi-solid aluminium.The rotational body was grooved to prevent a phenomenon called wall slippage.Continuous cooling experiment was used to observe the shear rate effects on the flow behaviour.It can be seen that the viscosity level decreases at higher shear rates.Shear rate jump experiment was carried out to evaluate the steady state flow curve within the analyzed shear rate range from 60 s-1 to 260 s-1.It is found that the power law indexes are-1.35 and-1.49 for 35% and 45% solid fraction, respectively.Finally, some mechanical property data of as-cast and as-thixoformed A201 alloy are included indicating the potential for high strength applications.展开更多
文摘To improve separation efficiency of the photogenerated electron-hole pairs,constructing a heterojunction is considered to be a promising strategy.However,the fabrication of heterojunction via a facile route to achieve a substantial improvement in photocatalytic performance is still challenging.In this work,a well-designed nanosheet-based rodlike step-scheme(S-scheme)heterojunction Bi_(4)O_(5)I_(2)/Bi_(4)O_(5)Br_(2) with rich oxygen vacancies(OVs)(Bi_(4)O_(5)I_(2)/Bi_(4)O_(5)Br_(2)-OV)was easily synthesized by calcining BiOAc0.6Br0.2I0.2(Ac-=CH3 COO-)precursor.The as-prepared Bi4O5I2/Bi4O5Br2-OV exhibited excellent visible light photocatalytic performance towards antibiotic tetracycline(TC)and dye rhodamine B(Rh B)degradation and removal rate reached 90.2% and 97.0%within 120 min,respectively,which was higher than those of Bi4O5I2-OV(56.8% and 71.8%),Bi4O5Br2-OV(47.4%and 68.4%),solid solution BiOAc0.6Br0.2I0.2(67.0% and 84.0%)and Bi_(4)O_(5)I_(2)/Bi_(4)O_(5)Br_(2) with poor oxygen vacancies(Bi4O5I2/Bi4O5Br2-P)(30.6%and 40.4%).Owing to the release of heat and generation of reducing carbon during calcining the precursor with Ac-,it could not only reduce the generation temperature of Bi-rich bismuth oxyhalides,which thus decreased particle size and increased surface areas,but also introduce surface OVs,which could trap photoelectrons and inhibit the recombination of carriers.In addition,the calcination of single solid solution precursor benefited to the formation of well-alloyed interfaces with larger contact areas between 2D/2D nanosheet-like materials,which facilitates charge carriers transfer at the interfaces.The Bi4O5I2/Bi4O5Br2-OV also shows the desirable removal rate for TC and Rh B in actual wastewater or in the presence of some electrolytes.This study provides an effective and simple strategy for designing OVs modified Bi-rich oxyhalides heterojunctions.
基金the "Ministerio de Ciencia e Innovación" and to the "Fondos FEDER",project "Integrauto" PSE-370000-2008-03the Basque Government,project "ETORTEK, Manufacturing 0.0 II",for their financial support
文摘The thermodynamic characterization as well as the rheological characterization of the A201 alloy were conducted.Thermodynamic simulations (CALPHAD method) and calorimetric experiments were performed to determine the solidus and liquidus temperatures, the melting range and the sensitivity of the solid fraction at the thixoforming temperatures.The rheology of aluminium alloy A201 was examined using a high temperature Searle rheometer.The flow behaviour was analyzed with concentric cylinders of graphite to avoid chemical interactions with the liquid or semi-solid aluminium.The rotational body was grooved to prevent a phenomenon called wall slippage.Continuous cooling experiment was used to observe the shear rate effects on the flow behaviour.It can be seen that the viscosity level decreases at higher shear rates.Shear rate jump experiment was carried out to evaluate the steady state flow curve within the analyzed shear rate range from 60 s-1 to 260 s-1.It is found that the power law indexes are-1.35 and-1.49 for 35% and 45% solid fraction, respectively.Finally, some mechanical property data of as-cast and as-thixoformed A201 alloy are included indicating the potential for high strength applications.