According to physiological and biochemical characteristics of Leptospirillum ferriphilum, a strain of object bacteria was isolated successfully. Bacteria were enriched by selective liquid medium and plated on designed...According to physiological and biochemical characteristics of Leptospirillum ferriphilum, a strain of object bacteria was isolated successfully. Bacteria were enriched by selective liquid medium and plated on designed single-layered agar solid medium. Colony was cultured and bacteria were collected. The morphologies of the object bacteria were observed using crystal violet staining, scanning electron microscope(SEM) and transmission electron microscope (TEM). The result of 16S rDNA identification shows that this bacterium belongs to Leptospirillum ferriphilum and it is named as Leptospirillum ferriphilum strain D1. These results indicate that this new single-layered agar solid medium is efficient and physiological-biochemical characteristics show that the optimum simple for isolation of Leptospirillum ferriphilum. Additionally, initial pH value and its growth temperature are 1.68 and 40℃.展开更多
Silver ion can be useful in improving chalcopyrite bioleaching efficiency.In this work,leaching kinetics of this process was investigated using silver-bearing solid waste under different chalcopyrite/solid waste ratio...Silver ion can be useful in improving chalcopyrite bioleaching efficiency.In this work,leaching kinetics of this process was investigated using silver-bearing solid waste under different chalcopyrite/solid waste ratios.Bioleaching behavior indicates that silver-bearing solid waste can enhance the bioleaching process,and the redox potential is much higher than the proposed appropriate range(380−480 mV vs Ag/AgCl)with the solid waste added.There is a positive correlation between temperature and copper extraction rate.The kinetics data fit well with the shrinking-core model.Under these leaching conditions,the bioleaching of chalcopyrite is controlled by internal diffusion with calculated apparent activation energy(Ea)of 28.24 kJ/mol.This work is possible benificial to promote the industrial application of silver catalyst in leaching of chalcopyrite.展开更多
Approximately 2.0-3.0 t of copper slag(CS) containing 35%-45% iron is generated for every ton of copper produced during the pyrometallurgical process from copper concentrate. Therefore, the recovery of iron from CS ut...Approximately 2.0-3.0 t of copper slag(CS) containing 35%-45% iron is generated for every ton of copper produced during the pyrometallurgical process from copper concentrate. Therefore, the recovery of iron from CS utilizes a valuable metal and alleviates the environmental stress caused by stockpile. In this paper, a new method has been developed to realize the enrichment of iron in CS through the selective removal of silica. The thermodynamic analyses and experimental results show that the iron in CS can be fully reduced into metallic iron by carbothermic reduction at 1473 K for 60 min. The silica was converted into free quartz solid solution(QSS) and cristobalite solid solution(CSS). QSS and CSS are readily soluble, whereas metallic iron is insoluble, in NaOH solution. Under optimal leaching conditions, a residue containing 87.32% iron is obtained by decreasing the silica content to 6.02% in the reduction roasted product. The zinc content in the residue is less than 0.05%. This study lays the foundation for the development of a new method to comprehensively extract silicon and iron in CS while avoiding the generation of secondary tailing.展开更多
A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffr...A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,and CO adsorption),the interfaces of the prepared catalysts were classified as Cu incorporated into ceria(Cu-Ov-Cex),dispersed Cu O(D-Cu O-Ce O2),and bulk Cu O(B-Cu O-Ce O2)over the Ce O2 surface.These results,together with those of activity tests,showed that the Cu-Ov-Cex species was closely related to the CO2 hydrogenation activity and resulted in a much higher turnover frequency of CH3OH production than that observed with the D-Cu O-Ce O2 and B-Cu O-Ce O2 species.Thus,the copper-ceria solid solution exhibited improved activity due to the higher Cu-Ov-Cex fraction.展开更多
The friction and wear properties of carbon fiber reinforced copper matrix composite in dry sliding against AISI-1045 steel was evaluated by a block-on-ring test machine. It was shown that the low frictional factor and...The friction and wear properties of carbon fiber reinforced copper matrix composite in dry sliding against AISI-1045 steel was evaluated by a block-on-ring test machine. It was shown that the low frictional factor and wear rate of the composite block could be maintained when pressure or velocity was below a certain value. But when the pressure or velocity exceeded the critical value, the friction factor and wear rate tended to increase rapidly with pressure and sliding velocity. The morphologies, elemental compositions, and surface profile of worn composite surfaces at different wear stages were analyzed by means of scanning electron microscopy, energy dispersive spectrometry, and profile-meter. It was found that low values of friction and wear were due to a thin solid film forming on the surface of the composite block which includes carbon and copper at a mild wear stage. The film could impede adhesion and provide some degree of self-lubrication. When the film included more metal elements and were damaged, severe wear happened, and the wear rate increased sharply. As a result, a transition diagram in friction and wear was constructed, which provided pressure and velocity conditions of change from mild wear and low friction to severe wear and high friction for the wear-resisting design.展开更多
Considering that copper mine tailings(CMTs)are commonly mixed with ordinary Portland cement,fly ash(FA),and kaolin to produce geopolymers,to make full use of CMTs,the properties of geopolymers manufactured under diffe...Considering that copper mine tailings(CMTs)are commonly mixed with ordinary Portland cement,fly ash(FA),and kaolin to produce geopolymers,to make full use of CMTs,the properties of geopolymers manufactured under different material mass ratios and curing methods(standard curing,water bath curing,and 60℃curing)are evaluated with significantly increased dosage of CMTs.Porosity and unconfined compressive strength tests,X-ray diffraction,field emission scanning electron microscopy,and energy dispersive spectroscopy are used to determine the physical and mechanical properties,microstructure,and mineral composition of geopolymers.Finally,costs and CO 2 emissions of specimens with different material mass ratios during the preparation processes are compared.The results show that during the geopolymerization of low-calcium materials,various geopolymer gels,including calcium silicate,calcium silicoaluminate,and mainly sodium silicoaluminate gels,coexist.The solid waste,cost,and carbon dioxide emission reductions can reach 100%,166.3 yuan/t,and 73.3 kg/t,respectively.Under a curing condition of 60℃,the sample with a CMTs mass fraction of 70%and an FA mass fraction of 30%meets the requirements of porosity,compressive strength.The resource utilization of CMT and FA is realized in a more economical way.展开更多
Direct electroreduction of solid cuprous chloride to prepare copper powder in a"neutral"ambient-temperature ionic liquid,1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid(BMIMBF4)was investigated.Cy...Direct electroreduction of solid cuprous chloride to prepare copper powder in a"neutral"ambient-temperature ionic liquid,1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid(BMIMBF4)was investigated.Cyclic voltammetry of the CuCl powder in a Pt-powder cavity microelectrode exhibited that solid CuCl can be electrochemical reduced in the ionic liquid.Chronoamperometry of the salt powder filled Mo-cavity electrode(current collector)in the ionic liquid further demonstrated the conversion of chloride to metal inside the cavity,as confirmed by scanning electron microscopy,energy-dispersive X-ray,and X-ray diffraction spectra.展开更多
基金Projects(50374075, 50321402) supported by the National Natural Science Foundation of ChinaProject(2004CB619204) supported by the National Basic Research and Development Program of China+1 种基金Project(200549) supported by the Specialized Research Fund of the NationalExcellent PhD Thesis
文摘According to physiological and biochemical characteristics of Leptospirillum ferriphilum, a strain of object bacteria was isolated successfully. Bacteria were enriched by selective liquid medium and plated on designed single-layered agar solid medium. Colony was cultured and bacteria were collected. The morphologies of the object bacteria were observed using crystal violet staining, scanning electron microscope(SEM) and transmission electron microscope (TEM). The result of 16S rDNA identification shows that this bacterium belongs to Leptospirillum ferriphilum and it is named as Leptospirillum ferriphilum strain D1. These results indicate that this new single-layered agar solid medium is efficient and physiological-biochemical characteristics show that the optimum simple for isolation of Leptospirillum ferriphilum. Additionally, initial pH value and its growth temperature are 1.68 and 40℃.
基金Project(2018JJ1041)supported by the Natural Science Foundation of Hunan,ChinaProjects(51774332,U1932129,51804350 and 51934009)supported by the National Natural Science Foundation of China。
文摘Silver ion can be useful in improving chalcopyrite bioleaching efficiency.In this work,leaching kinetics of this process was investigated using silver-bearing solid waste under different chalcopyrite/solid waste ratios.Bioleaching behavior indicates that silver-bearing solid waste can enhance the bioleaching process,and the redox potential is much higher than the proposed appropriate range(380−480 mV vs Ag/AgCl)with the solid waste added.There is a positive correlation between temperature and copper extraction rate.The kinetics data fit well with the shrinking-core model.Under these leaching conditions,the bioleaching of chalcopyrite is controlled by internal diffusion with calculated apparent activation energy(Ea)of 28.24 kJ/mol.This work is possible benificial to promote the industrial application of silver catalyst in leaching of chalcopyrite.
基金Project(WUT:2019IVA096)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2019M662733)supported by China Postdoctoral Science FoundationProject(2018YFC1901502)supported by National Key Research and Development Program of China。
文摘Approximately 2.0-3.0 t of copper slag(CS) containing 35%-45% iron is generated for every ton of copper produced during the pyrometallurgical process from copper concentrate. Therefore, the recovery of iron from CS utilizes a valuable metal and alleviates the environmental stress caused by stockpile. In this paper, a new method has been developed to realize the enrichment of iron in CS through the selective removal of silica. The thermodynamic analyses and experimental results show that the iron in CS can be fully reduced into metallic iron by carbothermic reduction at 1473 K for 60 min. The silica was converted into free quartz solid solution(QSS) and cristobalite solid solution(CSS). QSS and CSS are readily soluble, whereas metallic iron is insoluble, in NaOH solution. Under optimal leaching conditions, a residue containing 87.32% iron is obtained by decreasing the silica content to 6.02% in the reduction roasted product. The zinc content in the residue is less than 0.05%. This study lays the foundation for the development of a new method to comprehensively extract silicon and iron in CS while avoiding the generation of secondary tailing.
文摘A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,and CO adsorption),the interfaces of the prepared catalysts were classified as Cu incorporated into ceria(Cu-Ov-Cex),dispersed Cu O(D-Cu O-Ce O2),and bulk Cu O(B-Cu O-Ce O2)over the Ce O2 surface.These results,together with those of activity tests,showed that the Cu-Ov-Cex species was closely related to the CO2 hydrogenation activity and resulted in a much higher turnover frequency of CH3OH production than that observed with the D-Cu O-Ce O2 and B-Cu O-Ce O2 species.Thus,the copper-ceria solid solution exhibited improved activity due to the higher Cu-Ov-Cex fraction.
基金Supported by National Natural Science Foundation of China(No.59275180) .
文摘The friction and wear properties of carbon fiber reinforced copper matrix composite in dry sliding against AISI-1045 steel was evaluated by a block-on-ring test machine. It was shown that the low frictional factor and wear rate of the composite block could be maintained when pressure or velocity was below a certain value. But when the pressure or velocity exceeded the critical value, the friction factor and wear rate tended to increase rapidly with pressure and sliding velocity. The morphologies, elemental compositions, and surface profile of worn composite surfaces at different wear stages were analyzed by means of scanning electron microscopy, energy dispersive spectrometry, and profile-meter. It was found that low values of friction and wear were due to a thin solid film forming on the surface of the composite block which includes carbon and copper at a mild wear stage. The film could impede adhesion and provide some degree of self-lubrication. When the film included more metal elements and were damaged, severe wear happened, and the wear rate increased sharply. As a result, a transition diagram in friction and wear was constructed, which provided pressure and velocity conditions of change from mild wear and low friction to severe wear and high friction for the wear-resisting design.
基金The National Natural Science Foundation of China(No.41877240)Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1930).
文摘Considering that copper mine tailings(CMTs)are commonly mixed with ordinary Portland cement,fly ash(FA),and kaolin to produce geopolymers,to make full use of CMTs,the properties of geopolymers manufactured under different material mass ratios and curing methods(standard curing,water bath curing,and 60℃curing)are evaluated with significantly increased dosage of CMTs.Porosity and unconfined compressive strength tests,X-ray diffraction,field emission scanning electron microscopy,and energy dispersive spectroscopy are used to determine the physical and mechanical properties,microstructure,and mineral composition of geopolymers.Finally,costs and CO 2 emissions of specimens with different material mass ratios during the preparation processes are compared.The results show that during the geopolymerization of low-calcium materials,various geopolymer gels,including calcium silicate,calcium silicoaluminate,and mainly sodium silicoaluminate gels,coexist.The solid waste,cost,and carbon dioxide emission reductions can reach 100%,166.3 yuan/t,and 73.3 kg/t,respectively.Under a curing condition of 60℃,the sample with a CMTs mass fraction of 70%and an FA mass fraction of 30%meets the requirements of porosity,compressive strength.The resource utilization of CMT and FA is realized in a more economical way.
基金the financial support of the National Natural Science Foundation of China(51204080,51274108,21263007)the Natural Science Foundation of Yunnan Province(2011FA009)the Application Foundation Research of Yunnan Province(2011FZ020)
文摘Direct electroreduction of solid cuprous chloride to prepare copper powder in a"neutral"ambient-temperature ionic liquid,1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid(BMIMBF4)was investigated.Cyclic voltammetry of the CuCl powder in a Pt-powder cavity microelectrode exhibited that solid CuCl can be electrochemical reduced in the ionic liquid.Chronoamperometry of the salt powder filled Mo-cavity electrode(current collector)in the ionic liquid further demonstrated the conversion of chloride to metal inside the cavity,as confirmed by scanning electron microscopy,energy-dispersive X-ray,and X-ray diffraction spectra.