Polycrystalline and epitaxial CoSi 2 films are formed on the n-Si (111) substrates by solid state reaction of the as-deposited Co single-layer and Co/Ti bilayer with Si,respectively at different annealing phase.The C...Polycrystalline and epitaxial CoSi 2 films are formed on the n-Si (111) substrates by solid state reaction of the as-deposited Co single-layer and Co/Ti bilayer with Si,respectively at different annealing phase.The CoSi 2/Si Schottky contacts are measured with the current-voltage and capacitance-voltage (I-V/C-V) techniques within the range of temperature from 90K to room temperature.The measured I-V characteristics have been analyzed with a model based on the inhomogeneity in Schottky barrier height,i.e.,at high temperatures (≥~200K) or low temperatures but with a large bias,the I-V curves can be described by using the thermionic emission theory with a Gaussian distributed barrier height over the whole junction,while at low temperatures and with a small bias,the current is dominated by some small patches with low barrier height.It results in a plateau-like section in the low temperature I-V curves around 10 -7 A.At room temperature,the barrier height of polycrystalline CoSi 2/Si deduced from the I-V curve is about 0 57eV.For epitaxial CoSi 2,the barrier height depends on its final annealing temperature and increases from 0 54eV to 0 60eV with the annealing temperature increasing from 700℃ to 900℃.展开更多
Fe2+ oxidation by Acidithiobacillus ferrooxidans(At.ferrooxidans) under different solid contents by adding inert Al2O3 powder was examined in rotating-drum and stirred-tank reactors.The results show that the bioact...Fe2+ oxidation by Acidithiobacillus ferrooxidans(At.ferrooxidans) under different solid contents by adding inert Al2O3 powder was examined in rotating-drum and stirred-tank reactors.The results show that the bioactivity of At.ferrooxidans in the stirred-tank is higher than that in the rotating-drum in the absence of Al2O3 powder,but the biooxidation rate of Fe2+ decreases markedly from 0.23 g/(L·h) to 0.025 g/(L·h) with increasing the content of Al2O3 powder from 0 to 50%(mass fraction) in the stirred-tank probably due to the deactivation of At.ferrooxidans resulting from the collision and friction of solid particles.The increase in Al2O3 content has a little adverse effect on the bioactivity of At.ferrooxidans in the rotating-drum due to different mixing mechanisms of the two reactors.The biooxidation rate of Fe2+ in the rotating-drum is higher than that in the stirred-tank at the same content of Al2O3 powder,especially at high solid content.The higher bioactivity of At.ferrooxidans can be maintained for allowing high solid content in the rotating-drum reactor,but its application potential still needs to be verified further by the sulfide bioleaching for the property differences of Al2O3 powder and sulfide minerals.展开更多
Alumina coated LiNi1/3Mn1/3Co1/3O2 particles were obtained by a simple method of solid state reaction at room temperature. The reaction mechanism of solid state reaction at room temperature was investigated. The struc...Alumina coated LiNi1/3Mn1/3Co1/3O2 particles were obtained by a simple method of solid state reaction at room temperature. The reaction mechanism of solid state reaction at room temperature was investigated. The structure and morphology of the coating materials were investigated by XRD, SEM and TEM. The electrochemical performances of uncoated and Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials were studied within a voltage window of 3.00?4.35 V at current density of 30 mA/g. SEM, TEM and EDS analytical results indicate that the surface of LiNi1/3Mn1/3Co1/3O2 particles is coated with very fine Al2O3 composite, which leads to the improved cycle ability though a slight decrease in the first discharge capacity is observed. It is proposed that surface treatment by solid state reaction at room temperature is a simple and effective method to improve the cycle performance of LiNi1/3Co1/3Mn1/3O2 particles.展开更多
The carbothermic reduction of Panzhihua ilmenite with various additions of activated carbon was investigated byisothermal experiments over the temperature range of1373to1773K in the argon atmosphere.According to the r...The carbothermic reduction of Panzhihua ilmenite with various additions of activated carbon was investigated byisothermal experiments over the temperature range of1373to1773K in the argon atmosphere.According to the reaction kineticsrecorded by the infrared gas analyzer,it was found that the amount of carbon addition had little influence on the reaction rates atvarious temperatures except1473K.When the reaction temperature was above the eutectic temperature of1427K of Fe?C binarysystem,part of carbon would dissolve into Fe to form a liquid phase,which made the liquid Fe as a diffusion channel of carbon todiffuse to the reaction interface.The carbothermic reduction above1573K obeyed the shrinking-core model.The mass fraction ofTiC could be determined by the standard addition technique.展开更多
To solve the problem of vast cement and low strength in the treated sludge, clay mineral used for accessorial solidification material was applied to advance strength. The principle of solidification sludge strength be...To solve the problem of vast cement and low strength in the treated sludge, clay mineral used for accessorial solidification material was applied to advance strength. The principle of solidification sludge strength because of clay mineral is not clear and has not supported the choice of clay mineral. The mineral and pore water is analyzed in order to contrast clay mineral added or not based on the XRD and pore water chemical character. The result shows that the absorbed quantity of Ca2~ was reduced by sludge because of clay mineral added, the hydrated reaction was advanced and integrated solidified materials was formed.展开更多
SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The...SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The optimum conditions were also found, that is, the mass ratio of MoO3 used in the compound is 25%, the calcination temperature 450℃, and the soaked consistency of H2SO4 is 0.5mol.L^-1. Then it was applied in the catalytic synthesis of six similar important ketals and acetals as catalyst and revealed high catalytic activity. Under the condition that the molar ratio of aldehyde/ketone to glycol was 1:1.5, the mass ratio of the catalyst to the reactants was 0.5% and the reaction time 1.0 h, the yield of ketals and acetals reached up to 63.2%. The catalyst can be easily recovered and reused.展开更多
This paper presents a new selective adsorbent to remove nitrogen-containing heterocyclic compounds from model and commercial transportation diesel fuels based on characteristic reaction designed to occur in the pores ...This paper presents a new selective adsorbent to remove nitrogen-containing heterocyclic compounds from model and commercial transportation diesel fuels based on characteristic reaction designed to occur in the pores of substrate.This reactive adsorbent is composed of formaldehyde,phosphotungstic acid and Santa Barbara USA(SBA)-15.The experiment was based on assumed hydroxymethylation reaction of nitrogen-containing heterocyclic compounds with formaldehyde using phosphotungstic acid as catalyst in batch and fixed-bed systems.The nitrogen concentration in the model fuel was 237.33 ng.μl-1,carbazole and toluene were used as model nitrogen-containing heterocyclic compound and solvent,respectively.The effectiveness of reactive adsorbent for removal of nitrogen-containing heterocyclic compounds from commercial 0# diesel fuel containing 224.86 ng.μl-1 nitrogen was examined in a fixed-bed reactor at 70 ℃.The results showed that nitrogen in the model fuel was very low and the nitrogen concentration in the commercial diesel reduced to 2.44 ng.μl-1.The demand for transportation fuel with ultra-low nitrogen is satisfied.展开更多
Li3V2(PO4)3 samples were synthesized by sol-gel route and high temperature solid-state reaction. The influence of Li3V2(PO4)3 as cathode materials for lithium-ion batteries on electrochemical performances was inve...Li3V2(PO4)3 samples were synthesized by sol-gel route and high temperature solid-state reaction. The influence of Li3V2(PO4)3 as cathode materials for lithium-ion batteries on electrochemical performances was investigated. The structure of Li3Va(PO4)3 as cathode materials for lithium-ion batteries and morphology of Li3V2(PO4)3 were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Electrochemical performances were characterized by charge/discharge and AC impedance measurements. Li3V2(PO4)3 with smaller grain size shows better performances in terms of the discharge capacity and cycle stability. The improved electrochemical properties of Li3V2(PO4)3 are attributed to the refined grains and enhanced electrical conductivity. AC impedance measurements also show that the Li3V2(PO4)3 synthesized by sol-gel route exhibits significantly decreased charge-transfer resistance and shortened migration distance of lithium ions.展开更多
Two series of molybdenum-containing MCM-41 catalysts were prepared for oxidative desulfurization ofdibenzothiophene (DBT) using t-butylhydroperoxide (TBHP) as the oxidant. The electronic properties, pore dimension...Two series of molybdenum-containing MCM-41 catalysts were prepared for oxidative desulfurization ofdibenzothiophene (DBT) using t-butylhydroperoxide (TBHP) as the oxidant. The electronic properties, pore dimension and hydrophilic properties of the catalysts were studied by XRD, BET, and 1R spectrometry. The Mo-Al2O3 catalyst and TiMCM-3% were also studied for comparison. The two series of MCM-41 zeolite with MoO3 in the framework or impregnated on the surface exhibited considerable activities at low MoO3 content and both were faxbetter than the Mo-Al2O3 catalyst, but had lower activities as compared to the TiMCM-3% catalyst. The catalysts with the highest activity were evaluated in a fixed-bed reactor. The concentration of DBT in model diesel upon oxidative desulfurization was successfully reduced from 5000 ppm to less than 150 ppm, but the catalysts were deactivated very fast. The probable reason was the high affinity of DBTO2 to the MCM-41 skeleton, especially to MoO3. The catalysts could restore most of its original activity by treating with alcohol.展开更多
The formation of metastable alumina phases due to the oxidation of commercial FeCralloy(R) rods (0.5 mm thickness) at various temperatures and time periods has been examined. This structured layer acts as an ancho...The formation of metastable alumina phases due to the oxidation of commercial FeCralloy(R) rods (0.5 mm thickness) at various temperatures and time periods has been examined. This structured layer acts as an anchor to bind additional coatings of alumina via wash-coat techniques, thereby improving the layer thickness and increasing adhesion of the catalytic surface. Optimisation of the layer thickness and catalytic properties were conducted, using a range of analytical systems [scanning electron microscope (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD)]. The modified FeCralloy(R) rods were tested in a fixed bed reactor rig to assess the impact on yield for the dehydrogenation of methylcyclohexane.展开更多
The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSC...The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSCFB).Liquid viscosity promotes the axial liquid backmixing when solid particles and gas bubbles are present. Increases in gas velocities and solid circulating rates lead to higher Dax. The effects of liquid velocity on Dax are associated with liquid viscosity. Compared with conventional expanded beds, the GLSCFBs hold less axial liquid dispersion,approaching ideal plug-flow reactors.展开更多
Pectinase was immobilized onto chitosan support itsing glutaraldehyde as a coupling agent to obtain high activity and stability of pectinase.x A maximum residual activity of 55% was obtained with 0.4 mg proteirdg chit...Pectinase was immobilized onto chitosan support itsing glutaraldehyde as a coupling agent to obtain high activity and stability of pectinase.x A maximum residual activity of 55% was obtained with 0.4 mg proteirdg chitosan (w/w), 5% (v/v) g/utara/dehyde, and 4℃ for the crosslinking reaction. The optimal pH and temperature for pectinase activity changed from 3.0 and 40℃ to 3.5 and 50℃, respectively, after immobilization The immobilized enzyme exhibited higher stability under varying conditions of pH and temperature and better reusability than the free enzyme.展开更多
In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemica...In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.展开更多
In this study, a novel bio-based thermosetting system has been developed from epoxy resin (EP), with rosin-sourced anhydrides (maleopimaric acid, RAM) as curing agent and imidazole type latent catalyst (two amino...In this study, a novel bio-based thermosetting system has been developed from epoxy resin (EP), with rosin-sourced anhydrides (maleopimaric acid, RAM) as curing agent and imidazole type latent catalyst (two amino imidazole salt complex, IMA), to be used as matrix for hot-melt prepreg curing at mid-temperature. For comparison, the epoxy resin system with petroleum sourced hardener methylhexahydrophthalicanhydride (MHHPA) was also examined. The curing behaviour and mechanism were investigated by non-isothermal differential scanning calorimeter (DSC) analysis and Fourier transform infrared (FTIR) spectra. The results showed that the curing course of bio-based epoxy resin system containing RAM included two stages, which were the reaction between the free carboxyl group of RAM and oxirane ring under the acceleration of IMA, and the main reaction attributed to the reaction between anhydride and oxirane. According to Kissinger method, the reaction activation energy (E,) of two stages were 68.9 and 86.5kJmo1-1, respectively. The Eo of EP/MHHPA and EP/IMA resin system were 81.04 and 77.9kJmol-I. The processing property of EP/RAM/IMA system, i.e. the relationship between viscosity-temperature-time, was characterized by cone-plate viscometer aim to decide the processing parameter ofprepreg preparation. The effect of RAM content on mechanical performance and dynamic mechanical property was investigated. Noteworthily, compared with the laminates with EP/MHHPA as matrix, the laminates with RAM as hardeners achieved a 44%, 73% and 70℃ increase in bending strength, bending modulus and the glass transition temperature, respectively, due to the bulky hydrogenated phenanthrene ring structure incorporated into the cross-linking networks. When the fiber volume fraction reached 47%, the mechanical property of the laminates prepared with hot melt prepreg was superior or comparable to that of composites with pure petroleum sourced matrix. RAM as cross-linking agent of epoxy resin holds a great potential to satisfy the requirement of composites such as structure and secondary structure parts preparation.展开更多
文摘Polycrystalline and epitaxial CoSi 2 films are formed on the n-Si (111) substrates by solid state reaction of the as-deposited Co single-layer and Co/Ti bilayer with Si,respectively at different annealing phase.The CoSi 2/Si Schottky contacts are measured with the current-voltage and capacitance-voltage (I-V/C-V) techniques within the range of temperature from 90K to room temperature.The measured I-V characteristics have been analyzed with a model based on the inhomogeneity in Schottky barrier height,i.e.,at high temperatures (≥~200K) or low temperatures but with a large bias,the I-V curves can be described by using the thermionic emission theory with a Gaussian distributed barrier height over the whole junction,while at low temperatures and with a small bias,the current is dominated by some small patches with low barrier height.It results in a plateau-like section in the low temperature I-V curves around 10 -7 A.At room temperature,the barrier height of polycrystalline CoSi 2/Si deduced from the I-V curve is about 0 57eV.For epitaxial CoSi 2,the barrier height depends on its final annealing temperature and increases from 0 54eV to 0 60eV with the annealing temperature increasing from 700℃ to 900℃.
基金Project(2010CB630904) supported by the National Basic Research Program of ChinaProject(5102030) supported by the Beijing Natural Science Foundation,China+1 种基金Projects(21076214,21006108) supported by the National Natural Science Foundation of ChinaProject supported by the Open Funding Project of the State Key Laboratory of Bioreactor Engineering,China
文摘Fe2+ oxidation by Acidithiobacillus ferrooxidans(At.ferrooxidans) under different solid contents by adding inert Al2O3 powder was examined in rotating-drum and stirred-tank reactors.The results show that the bioactivity of At.ferrooxidans in the stirred-tank is higher than that in the rotating-drum in the absence of Al2O3 powder,but the biooxidation rate of Fe2+ decreases markedly from 0.23 g/(L·h) to 0.025 g/(L·h) with increasing the content of Al2O3 powder from 0 to 50%(mass fraction) in the stirred-tank probably due to the deactivation of At.ferrooxidans resulting from the collision and friction of solid particles.The increase in Al2O3 content has a little adverse effect on the bioactivity of At.ferrooxidans in the rotating-drum due to different mixing mechanisms of the two reactors.The biooxidation rate of Fe2+ in the rotating-drum is higher than that in the stirred-tank at the same content of Al2O3 powder,especially at high solid content.The higher bioactivity of At.ferrooxidans can be maintained for allowing high solid content in the rotating-drum reactor,but its application potential still needs to be verified further by the sulfide bioleaching for the property differences of Al2O3 powder and sulfide minerals.
基金Project(50604018) supported by the National Natural Science Foundation of China
文摘Alumina coated LiNi1/3Mn1/3Co1/3O2 particles were obtained by a simple method of solid state reaction at room temperature. The reaction mechanism of solid state reaction at room temperature was investigated. The structure and morphology of the coating materials were investigated by XRD, SEM and TEM. The electrochemical performances of uncoated and Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials were studied within a voltage window of 3.00?4.35 V at current density of 30 mA/g. SEM, TEM and EDS analytical results indicate that the surface of LiNi1/3Mn1/3Co1/3O2 particles is coated with very fine Al2O3 composite, which leads to the improved cycle ability though a slight decrease in the first discharge capacity is observed. It is proposed that surface treatment by solid state reaction at room temperature is a simple and effective method to improve the cycle performance of LiNi1/3Co1/3Mn1/3O2 particles.
基金Project(FRF-TP-15-009A3) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1460201) supported by the National Natural Science Foundation of China
文摘The carbothermic reduction of Panzhihua ilmenite with various additions of activated carbon was investigated byisothermal experiments over the temperature range of1373to1773K in the argon atmosphere.According to the reaction kineticsrecorded by the infrared gas analyzer,it was found that the amount of carbon addition had little influence on the reaction rates atvarious temperatures except1473K.When the reaction temperature was above the eutectic temperature of1427K of Fe?C binarysystem,part of carbon would dissolve into Fe to form a liquid phase,which made the liquid Fe as a diffusion channel of carbon todiffuse to the reaction interface.The carbothermic reduction above1573K obeyed the shrinking-core model.The mass fraction ofTiC could be determined by the standard addition technique.
基金Acknowledgments Foundation item: National Science Foundation of China (No. 50808068) The Ph.D. Programs Foundation of Ministry of Education of China (No. 200802941001).
文摘To solve the problem of vast cement and low strength in the treated sludge, clay mineral used for accessorial solidification material was applied to advance strength. The principle of solidification sludge strength because of clay mineral is not clear and has not supported the choice of clay mineral. The mineral and pore water is analyzed in order to contrast clay mineral added or not based on the XRD and pore water chemical character. The result shows that the absorbed quantity of Ca2~ was reduced by sludge because of clay mineral added, the hydrated reaction was advanced and integrated solidified materials was formed.
文摘SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The optimum conditions were also found, that is, the mass ratio of MoO3 used in the compound is 25%, the calcination temperature 450℃, and the soaked consistency of H2SO4 is 0.5mol.L^-1. Then it was applied in the catalytic synthesis of six similar important ketals and acetals as catalyst and revealed high catalytic activity. Under the condition that the molar ratio of aldehyde/ketone to glycol was 1:1.5, the mass ratio of the catalyst to the reactants was 0.5% and the reaction time 1.0 h, the yield of ketals and acetals reached up to 63.2%. The catalyst can be easily recovered and reused.
基金Supported by the National Natural Science Foundation of China(21006053)the Fundamental Research Funds for the Central Universities(65010551)the Research Funds of Humanistic Social Science for Cyclic Economy and Low-Carbon Developments(951004)
文摘This paper presents a new selective adsorbent to remove nitrogen-containing heterocyclic compounds from model and commercial transportation diesel fuels based on characteristic reaction designed to occur in the pores of substrate.This reactive adsorbent is composed of formaldehyde,phosphotungstic acid and Santa Barbara USA(SBA)-15.The experiment was based on assumed hydroxymethylation reaction of nitrogen-containing heterocyclic compounds with formaldehyde using phosphotungstic acid as catalyst in batch and fixed-bed systems.The nitrogen concentration in the model fuel was 237.33 ng.μl-1,carbazole and toluene were used as model nitrogen-containing heterocyclic compound and solvent,respectively.The effectiveness of reactive adsorbent for removal of nitrogen-containing heterocyclic compounds from commercial 0# diesel fuel containing 224.86 ng.μl-1 nitrogen was examined in a fixed-bed reactor at 70 ℃.The results showed that nitrogen in the model fuel was very low and the nitrogen concentration in the commercial diesel reduced to 2.44 ng.μl-1.The demand for transportation fuel with ultra-low nitrogen is satisfied.
基金Projects(0991025,0842003-5 and 0832259) supported by Natural Science Foundation of Guangxi Province,ChinaProject supported by the Joint Graduate Innovation Talent Cultivation Base of Guangxi Province,ChinaProject(GuiJiaoRen[2007]71) supported by the Research Funds of the Guangxi Key Laboratory of Environmental Engineering,Protection and Assessment Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning,China
文摘Li3V2(PO4)3 samples were synthesized by sol-gel route and high temperature solid-state reaction. The influence of Li3V2(PO4)3 as cathode materials for lithium-ion batteries on electrochemical performances was investigated. The structure of Li3Va(PO4)3 as cathode materials for lithium-ion batteries and morphology of Li3V2(PO4)3 were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Electrochemical performances were characterized by charge/discharge and AC impedance measurements. Li3V2(PO4)3 with smaller grain size shows better performances in terms of the discharge capacity and cycle stability. The improved electrochemical properties of Li3V2(PO4)3 are attributed to the refined grains and enhanced electrical conductivity. AC impedance measurements also show that the Li3V2(PO4)3 synthesized by sol-gel route exhibits significantly decreased charge-transfer resistance and shortened migration distance of lithium ions.
文摘Two series of molybdenum-containing MCM-41 catalysts were prepared for oxidative desulfurization ofdibenzothiophene (DBT) using t-butylhydroperoxide (TBHP) as the oxidant. The electronic properties, pore dimension and hydrophilic properties of the catalysts were studied by XRD, BET, and 1R spectrometry. The Mo-Al2O3 catalyst and TiMCM-3% were also studied for comparison. The two series of MCM-41 zeolite with MoO3 in the framework or impregnated on the surface exhibited considerable activities at low MoO3 content and both were faxbetter than the Mo-Al2O3 catalyst, but had lower activities as compared to the TiMCM-3% catalyst. The catalysts with the highest activity were evaluated in a fixed-bed reactor. The concentration of DBT in model diesel upon oxidative desulfurization was successfully reduced from 5000 ppm to less than 150 ppm, but the catalysts were deactivated very fast. The probable reason was the high affinity of DBTO2 to the MCM-41 skeleton, especially to MoO3. The catalysts could restore most of its original activity by treating with alcohol.
文摘The formation of metastable alumina phases due to the oxidation of commercial FeCralloy(R) rods (0.5 mm thickness) at various temperatures and time periods has been examined. This structured layer acts as an anchor to bind additional coatings of alumina via wash-coat techniques, thereby improving the layer thickness and increasing adhesion of the catalytic surface. Optimisation of the layer thickness and catalytic properties were conducted, using a range of analytical systems [scanning electron microscope (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD)]. The modified FeCralloy(R) rods were tested in a fixed bed reactor rig to assess the impact on yield for the dehydrogenation of methylcyclohexane.
文摘The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSCFB).Liquid viscosity promotes the axial liquid backmixing when solid particles and gas bubbles are present. Increases in gas velocities and solid circulating rates lead to higher Dax. The effects of liquid velocity on Dax are associated with liquid viscosity. Compared with conventional expanded beds, the GLSCFBs hold less axial liquid dispersion,approaching ideal plug-flow reactors.
文摘Pectinase was immobilized onto chitosan support itsing glutaraldehyde as a coupling agent to obtain high activity and stability of pectinase.x A maximum residual activity of 55% was obtained with 0.4 mg proteirdg chitosan (w/w), 5% (v/v) g/utara/dehyde, and 4℃ for the crosslinking reaction. The optimal pH and temperature for pectinase activity changed from 3.0 and 40℃ to 3.5 and 50℃, respectively, after immobilization The immobilized enzyme exhibited higher stability under varying conditions of pH and temperature and better reusability than the free enzyme.
基金supported by the National Natural Science Foundation of China(Grant No.11572227)Shenzhen Municipal Government through the Fundamental Research Project(Grant No.JCYJ20170307151049286)
文摘In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.
基金supported by the China-EU co-funded project ECO-COMPASS(Grant No.MJ2015-HG-103)
文摘In this study, a novel bio-based thermosetting system has been developed from epoxy resin (EP), with rosin-sourced anhydrides (maleopimaric acid, RAM) as curing agent and imidazole type latent catalyst (two amino imidazole salt complex, IMA), to be used as matrix for hot-melt prepreg curing at mid-temperature. For comparison, the epoxy resin system with petroleum sourced hardener methylhexahydrophthalicanhydride (MHHPA) was also examined. The curing behaviour and mechanism were investigated by non-isothermal differential scanning calorimeter (DSC) analysis and Fourier transform infrared (FTIR) spectra. The results showed that the curing course of bio-based epoxy resin system containing RAM included two stages, which were the reaction between the free carboxyl group of RAM and oxirane ring under the acceleration of IMA, and the main reaction attributed to the reaction between anhydride and oxirane. According to Kissinger method, the reaction activation energy (E,) of two stages were 68.9 and 86.5kJmo1-1, respectively. The Eo of EP/MHHPA and EP/IMA resin system were 81.04 and 77.9kJmol-I. The processing property of EP/RAM/IMA system, i.e. the relationship between viscosity-temperature-time, was characterized by cone-plate viscometer aim to decide the processing parameter ofprepreg preparation. The effect of RAM content on mechanical performance and dynamic mechanical property was investigated. Noteworthily, compared with the laminates with EP/MHHPA as matrix, the laminates with RAM as hardeners achieved a 44%, 73% and 70℃ increase in bending strength, bending modulus and the glass transition temperature, respectively, due to the bulky hydrogenated phenanthrene ring structure incorporated into the cross-linking networks. When the fiber volume fraction reached 47%, the mechanical property of the laminates prepared with hot melt prepreg was superior or comparable to that of composites with pure petroleum sourced matrix. RAM as cross-linking agent of epoxy resin holds a great potential to satisfy the requirement of composites such as structure and secondary structure parts preparation.