Based on the requirements of dual-carbon strategy and the major needs of sustainable development,it was of great significance to develop green and environmentally-friendly bio-based rubbers.However,it was difficult fo...Based on the requirements of dual-carbon strategy and the major needs of sustainable development,it was of great significance to develop green and environmentally-friendly bio-based rubbers.However,it was difficult for existing rubber materials to simultaneously meet the requirements of low-temperature resistance and excellent dynamic performance,which greatly limited its application in special fields at low temperature.To solve this problem,the bio-based acyclic sesquiterpene compound,trans-β-farnesene was autonomously synthesized by bio-fermentation in our laboratory.展开更多
Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditi...Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.展开更多
The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high press...The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.展开更多
For the very soft clay with high water content, its void ratio, compressibility coefficient and permeability varied with stress during consolidation. It is necessary to use large strain consolidation based on the perm...For the very soft clay with high water content, its void ratio, compressibility coefficient and permeability varied with stress during consolidation. It is necessary to use large strain consolidation based on the permeability-void ratio relationship and effective stress-void ratio relationship to analyze these properties. To overcome the disadvantages of conventional oedometer test, and determine the effective stress-void relations of this kind of soil, osmotic pressure consolidation test for highly plastic clay study and the expression of permeability-void ratio are performed. Therefore, the decided properties will be reasonably used for solving the large strain consolidation equation.展开更多
A new processing technology,powder thixoforming,for preparation of particle reinforced metal matrix composites was proposed and 6061 aluminum alloy was prepared by powder thixoforging.6061 ingots were first prepared b...A new processing technology,powder thixoforming,for preparation of particle reinforced metal matrix composites was proposed and 6061 aluminum alloy was prepared by powder thixoforging.6061 ingots were first prepared by cold-pressing the atomized 6061 alloy powders,and then the ingots were partially remelted followed by thixoforging.The effects of reheating time,mould temperature and reheating temperature on microstructure and mechanical properties of the thixoforged alloys were investigated.The results indicate that all of the three parameters have large effects on the microstructure and mechanical properties.Owing to the microstructure changes,the fracture regime varies with the processing parameters.Furthermore,cracks always initiate from shrinkage porosities and inclusions,and then propagate either along the secondarily solidified structures or primary particles.The ultimate tensile strength,elongation and hardness of the resulting alloy are up to 196 MPa,11.0%and HV 55.7 respectively.展开更多
The effects of solution heat treatment on the microstructure and mechanical properties of AZ61-0.7Si magnesium alloy were investigated.The results indicate that the solution heat treatment can modify the Chinese scrip...The effects of solution heat treatment on the microstructure and mechanical properties of AZ61-0.7Si magnesium alloy were investigated.The results indicate that the solution heat treatment can modify the Chinese script shaped Mg2Si phases in the AZ61-0.7Si magnesium alloy.After being solutionized at 420℃ for 16-48 h,the morphology of the Mg2Si phases in the AZ61-0.7Si alloy changes from the Chinese script shape to the short pole and block shapes.Accordingly,the tensile and creep properties of the AZ61-0.7Si alloy are improved.After being solutionized at 420℃ for 24 h and followed by aging treatment at 200℃ for 12 h,the heat-treated alloy exhibits relatively high tensile and creep properties than those of the as-cast alloy.展开更多
Due to the widespread clinical use of imaging modalities such as ultrasonography,computed tomography and magnetic resonance imaging (MRI),previously unsuspected liver masses are increasingly being found in asymptomati...Due to the widespread clinical use of imaging modalities such as ultrasonography,computed tomography and magnetic resonance imaging (MRI),previously unsuspected liver masses are increasingly being found in asymptomatic patients.This review discusses the various characteristics of the most common solid liver lesions and recommends a practical approach for diagnostic workup.Likely diagnoses include hepatocellular carcinoma (the most likely;a solid liver lesion in a cirrhotic liver) and hemangioma (generally presenting as a mass in a non-cirrhotic liver).Focal nodular hyperplasia and hepatic adenoma should be ruled out in young women.In 70% of cases,MRI with gadolinium differentiates between these lesions.Fine needle core biopsy or aspiration,or both,might be required in doubtful cases.If uncertainty persists as to the nature of the lesion,surgical resection is recommended.If the patient is known to have a primary malignancy and the lesion was found at tumor staging or follow up,histology is required only when the nature of the liver lesion is doubtful.展开更多
Terzaghi gave a theory of soil consolidation based on the effective stress principle, which was derived on several ideal assumptions to get a simplified theory. To avoid the limitations involved in Terzaghi’s theory,...Terzaghi gave a theory of soil consolidation based on the effective stress principle, which was derived on several ideal assumptions to get a simplified theory. To avoid the limitations involved in Terzaghi’s theory, many efforts are being made by scholars to solve the problems in practical engineering situations. This paper presents a generalized theory for one dimensional consolidation of saturated soft clay with variable compressibility and permeability. The semi-analytical solution presented here takes into account the well known empirical e-logk and e-logp′(σ′) relations under instantaneous loading. Study of the consolida- tion behaviors showed that the ratio of Cc and Ck (the slope of e-logp and e-logk respectively) govern the ratio of consolidation. A simulative laboratory investigation with GDS advanced consolidation system was made to analyze the clay consolidation process and compare the results with the semi-analytical solution.展开更多
Thixoforming is a processing method that deforms metal in a semisolid state.The advantages of this process include the production of parts with good surface finish,fine microstructures and superior mechanical properti...Thixoforming is a processing method that deforms metal in a semisolid state.The advantages of this process include the production of parts with good surface finish,fine microstructures and superior mechanical properties.However,the process mostly produces parts from aluminium cast grades,thereby not fully utilising the true potential of this method.Hence,thermodynamic modelling can be used to formulate alloy compositions that favour this processing method.Here,the effects of reducing copper content and increasing silicon and magnesium contents on the thixoformability of aluminium alloy 2014 were presented.The work consists of both the modelling and experimental validation.Results showed that by increasing Si and decreasing Cu content in the alloy,the solidification interval temperature was decreased and the temperature working window between the stipulated liquid fractions was widened,two of the characteristics favouring the process.A high solid-solution temperature employed resulted in the dissolution of unfavourable Mg2Si compound.An increase in Mg content used also resulted in the formation of the compactπ-Al8FeMg3Si6 phase and the decrease in the amount of the sharp and plate-like structure of theβ-Al5FeSi phase,improving the strength of the modified alloy.Subsequent T6 heat treatment successfully further increased the strength of the modified alloy.展开更多
Tensile properties of as-deformed 2A50 aluminum alloy were investigated in the high temperature solid and semi-solid states. The results show that temperature has almost no effect on the maximum tensile stress between...Tensile properties of as-deformed 2A50 aluminum alloy were investigated in the high temperature solid and semi-solid states. The results show that temperature has almost no effect on the maximum tensile stress between 500 ℃ and 530 ℃, and the maximum tensile stress decreases rapidly when the temperature is above 532 ℃. The ductility decreases with increasing temperature and has an obvious fall when the temperature is above solidus temperature. This alloy almost has no ductility above 537 ℃, and cannot sustain tensile stress above 550℃. A brittle temperature range in which this alloy is prone to form microcracks was derived. The relation between microstructure, fraction solid and tensile properties were also investigated by examining the metallograph and fracture surface morphology of tested specimens, which could provide reference for forecasting the microcracks in this alloy occurring in semi-solid processing.展开更多
The solidification microstructure,fracture morphologies,and mechanical properties of an Al-18Si alloy and alloys modified with Al-5Ti and Al-3P master alloys were investigated using an optical microscope,scanning elec...The solidification microstructure,fracture morphologies,and mechanical properties of an Al-18Si alloy and alloys modified with Al-5Ti and Al-3P master alloys were investigated using an optical microscope,scanning electron microscope,and an electronic universal testing machine.The results show that additions of Al-5Ti and Al-3P have significant effects on the size and area fraction of the primary Si and the mechanical properties of the Al-18Si alloy.Compared to the Al-18Si alloy modified with 0.6 wt%Al-5Ti at 850°C,when the Al-18Si alloy was modified with 0.3 wt%Al-5Ti and 0.5 wt%Al-3P at the same temperature,the average size of the primary Si decreased from 39 to 14μm and the area fraction increased from 9.5%to 11.6%.The biggest influencing factor on the tensile strength and elongation of the Al-18Si alloy is the addition of Al-3P,followed by the modification temperature and the addition of Al-5Ti.At a modification temperature of 850°C,the tensile strength and elongation of the Al-18Si alloy modified with 0.3 wt%Al-5Ti+0.5 wt%Al-3P increased by 19.6%and 88.6%,respectively compared to that of the Al-18Si alloy modified with 0.6 wt%Al-5Ti.展开更多
In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reducti...In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.展开更多
The deformation, of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Blot' s consolidation theory. With the increa...The deformation, of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Blot' s consolidation theory. With the increase in time of loading, the damage accumulation becomes larger. Under the centre and toe of embankment, damage becomes serious. Under the centre of embankment, vertical damage values are bigger than horizontal ones. Under the toe of embankment, horizontal damage values are bigger than vertical ones.展开更多
In order to solve transport problems of industry solid,firstly,a new applicationnotion of pipeline transport was presented,that is to say,combining pretreatment andtransport with disposal techniques of industry solid ...In order to solve transport problems of industry solid,firstly,a new applicationnotion of pipeline transport was presented,that is to say,combining pretreatment andtransport with disposal techniques of industry solid waste.Secondly,the integrated dis-posal and transport system for industry solid waste was introduced,in particular,the oper-ating principles,equipment set-up,key technology and technical parameters.Next,thispaper illustrated the application of this integrated system.Such as it can transport coalsludge with sufficiently high solids content(about 72%~77%)and high apparent viscosity(about 1 000~3 000 Pa.s)directly by pipeline having no use for water and addition agent.Generally,the transport distance is about 1 000 m.This system has been successfullyused in innocuous disposition and efficient utilization of other industrial byproducts or solidwastes,such as city sludge and paper making waste.The integrated system causes nopollution to the environment for its complete seal and realizes protecting the environment,conserving the energy,promoting the development of cycling economic.Finally,the paperdiscussed the research works that were needed for studying such pipeline transport sys-tem and narrates the relevant condition and application status.展开更多
A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevo...A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.展开更多
The differences in the microstructure and elevated temperature tensile properties of gravity die cast,squeeze cast,and semi-solid thixoformed Al-Si-Cu-Mn-Fe alloys after thermal exposure at 300℃were discussed.The res...The differences in the microstructure and elevated temperature tensile properties of gravity die cast,squeeze cast,and semi-solid thixoformed Al-Si-Cu-Mn-Fe alloys after thermal exposure at 300℃were discussed.The results demonstrate that the elevated temperature tensile properties of semi-solid thixoformed alloys were significantly higher than those of gravity die cast and squeeze cast alloys,especially after thermal exposure for 100 h.The ultimate tensile strength(UTS)of semi-solid thixoformed alloys after thermal exposure at 300℃for 0.5,10 and 100 h were 181,122 and 110 MPa,respectively.The UTS values of semi-solid thixoformed alloys were higher than those of heat resistant aluminum alloys used in commercial applications.The enhanced elevated temperature tensile properties of semi-solid thixoformed experimental alloys after thermal exposure can be attributed to the combined reinforcement of precipitation strengthening and grain boundary strengthening due to thermally stable intermetallic phases as well as suitable grain size.展开更多
With FLAC, a criteria of stress release ratio (SRR), i.e., about 10% of the relative difference of the ground settlement before and after the supporting system is installed, is incorporated into stress release meth...With FLAC, a criteria of stress release ratio (SRR), i.e., about 10% of the relative difference of the ground settlement before and after the supporting system is installed, is incorporated into stress release method (SRM). At the same time, the Mohr-Coulomb Criterion is used to analyze stress changes around the tunnel induced by excavation. It shows that the surrounding soil around shallow tunnels can be partitioned by loosened zones (unloading zones) and plastic zones among which the shear stresses in the soil are less than 10 kPa below the M-C yield line. Both types of zones are separated. With the increasing of the SRR, the areas of plastic zones and loosen zones gradually increase. The surrounding soil is equally divided into 24 regions in order to study the influence of different grouting regions on the ground settlement. The reinforcing effect of grouting can be modeled by enhancement of the soil strength around the tunnel. By the approach of the SRM, numerical analysis indicates that, in the upper area (top of the surrounding soil about 210°), the reinforcing effect gradually decreases as the reinforcing region moves from arch springing to the vault of the crown; when reinforcing regions lie in the upside of the surrounding soil, the influence on the ground settlement is generally greater than in the lower part; at the same time, with the increase of the SRR, the influential differences are more and more obvious.展开更多
A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteri...A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteristics of the rheo-diecasting components were investigated at different rotation speeds.Flow characteristics and microstructural evolution of the semi-solid slurry during the rheo-diecasting process were analyzed and the mechanical properties of the rheo-diecasting components were studied.The experimental results show that the process is able to obtain such components in which the primaryα-Mg particles are fine,nearly spherical and uniformly distributed in the matrix.When the rotation speed of internal taper barrel is 700 r/min,the primaryα-Mg particles get a mean diameter of about 45μm and a shape factor of about 0.81.The magnesium alloy melt has complex stirring-fixed flow characteristics when flowing in TBR machine.Compared with conventional die-casing process,the rheo-diecasting process can improve the mechanical properties of components;especially,the elongation is improved by 80%.展开更多
As the core of the Energy-Minimization Multi-Scale(EMMS) approach,the so-called stability condi-tion has been proposed to reflect the compromise between different dominant mechanisms and believed to be in-dispensable ...As the core of the Energy-Minimization Multi-Scale(EMMS) approach,the so-called stability condi-tion has been proposed to reflect the compromise between different dominant mechanisms and believed to be in-dispensable for understanding the complex nature of gas-solid fluidization systems.This approach was recently ex-tended to the study of gas-liquid bubble columns.In this article,we try to analyze the intrinsic similarity between gas-solid and gas-liquid systems by using the EMMS approach.First,the model solution spaces for the two systems are depicted through a unified numerical solution strategy,so that we are able to find three structural hierarchies in the EMMS model for gas-solid systems.This may help to understand the roles of cluster diameter correlation and stability condition.Second,a common characteristic of gas-solid and gas-liquid systems can be found by comparing the model solutions for the two systems,albeit structural parameters and stability criteria are specific in each system:two local minima of the micro-scale energy dissipation emerges simultaneously in the solution space of structure parameters,reflecting the compromise of two different dominant mechanisms.They may share an equal value at a critical condition of operating conditions,and the global minimum may shift from one to the other when the oper-ating condition changes.As a result,structure parameters such as voidage or gas hold-up exhibit a jump change due to this shift,leading to dramatic structure variation and hence regime transition of these systems.This demonstrates that it is the stability condition that drives the structure variation and system evolution,which may be the intrinsic similarity of gas-solid and gas-liquid systems.展开更多
There is presented the review of publications connecting with creation of matrices for the immobilization of long-lived radionuclides and radioactive waste for storage and disposal, as well as for the transmutation. T...There is presented the review of publications connecting with creation of matrices for the immobilization of long-lived radionuclides and radioactive waste for storage and disposal, as well as for the transmutation. This paper substantiates the practicability and feasibility of obtaining the carbon matrces by carbonization of imidoderivatives.展开更多
基金Supported by National Natural Science Foundation of China(52403096).
文摘Based on the requirements of dual-carbon strategy and the major needs of sustainable development,it was of great significance to develop green and environmentally-friendly bio-based rubbers.However,it was difficult for existing rubber materials to simultaneously meet the requirements of low-temperature resistance and excellent dynamic performance,which greatly limited its application in special fields at low temperature.To solve this problem,the bio-based acyclic sesquiterpene compound,trans-β-farnesene was autonomously synthesized by bio-fermentation in our laboratory.
基金Project (50874045) supported by the National Natural Science Foundation of ChinaProjects (200902472, 20080431021) supported by the China Postdoctoral Science FoundationProject (10A044) supported by the Research Foundation of Education Bureau of Hunan Province of China
文摘Cu50Zr40Ti10 bulk amorphous alloys were fabricated by hot pressing gas-atomized Cu50Zr40Ti10 amorphous powder under different consolidation conditions without vacuum and inert gas protection. The consolidation conditions of the Cu50Zr40Ti10 amorphous powder were investigated based on an L9(34) orthogonal design. The compression strength and strain limit of the Cu50Zr40Ti10 bulk amorphous alloys can reach up to 1090.4 MPa and 11.9 %, respectively. The consolidation pressure significantly influences the strain limit and compression strength of the compact. But the mechanical properties are not significantly influenced by the consolidation temperature. In addition, the preforming pressure significantly influences not the compression strength but the strain limit. The optimum consolidation condition for the Cu50Zr40Ti10 amorphous powder is first precompacted under the pressure of 150 MPa, and then consolidated under the pressure of 450 MPa and the temperature of 380 °C.
文摘The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.
文摘For the very soft clay with high water content, its void ratio, compressibility coefficient and permeability varied with stress during consolidation. It is necessary to use large strain consolidation based on the permeability-void ratio relationship and effective stress-void ratio relationship to analyze these properties. To overcome the disadvantages of conventional oedometer test, and determine the effective stress-void relations of this kind of soil, osmotic pressure consolidation test for highly plastic clay study and the expression of permeability-void ratio are performed. Therefore, the decided properties will be reasonably used for solving the large strain consolidation equation.
基金Project(2014-07)supported by the Basic Scientific Fund of Gansu University,ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of ChinaProject supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,China
文摘A new processing technology,powder thixoforming,for preparation of particle reinforced metal matrix composites was proposed and 6061 aluminum alloy was prepared by powder thixoforging.6061 ingots were first prepared by cold-pressing the atomized 6061 alloy powders,and then the ingots were partially remelted followed by thixoforging.The effects of reheating time,mould temperature and reheating temperature on microstructure and mechanical properties of the thixoforged alloys were investigated.The results indicate that all of the three parameters have large effects on the microstructure and mechanical properties.Owing to the microstructure changes,the fracture regime varies with the processing parameters.Furthermore,cracks always initiate from shrinkage porosities and inclusions,and then propagate either along the secondarily solidified structures or primary particles.The ultimate tensile strength,elongation and hardness of the resulting alloy are up to 196 MPa,11.0%and HV 55.7 respectively.
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2007CB613704)supported by the National Basic Research Program of ChinaProject(2006AA4012-9-6,2007BB4400)supported by the Chongqing Science and Technology Commission,China
文摘The effects of solution heat treatment on the microstructure and mechanical properties of AZ61-0.7Si magnesium alloy were investigated.The results indicate that the solution heat treatment can modify the Chinese script shaped Mg2Si phases in the AZ61-0.7Si magnesium alloy.After being solutionized at 420℃ for 16-48 h,the morphology of the Mg2Si phases in the AZ61-0.7Si alloy changes from the Chinese script shape to the short pole and block shapes.Accordingly,the tensile and creep properties of the AZ61-0.7Si alloy are improved.After being solutionized at 420℃ for 24 h and followed by aging treatment at 200℃ for 12 h,the heat-treated alloy exhibits relatively high tensile and creep properties than those of the as-cast alloy.
文摘Due to the widespread clinical use of imaging modalities such as ultrasonography,computed tomography and magnetic resonance imaging (MRI),previously unsuspected liver masses are increasingly being found in asymptomatic patients.This review discusses the various characteristics of the most common solid liver lesions and recommends a practical approach for diagnostic workup.Likely diagnoses include hepatocellular carcinoma (the most likely;a solid liver lesion in a cirrhotic liver) and hemangioma (generally presenting as a mass in a non-cirrhotic liver).Focal nodular hyperplasia and hepatic adenoma should be ruled out in young women.In 70% of cases,MRI with gadolinium differentiates between these lesions.Fine needle core biopsy or aspiration,or both,might be required in doubtful cases.If uncertainty persists as to the nature of the lesion,surgical resection is recommended.If the patient is known to have a primary malignancy and the lesion was found at tumor staging or follow up,histology is required only when the nature of the liver lesion is doubtful.
基金Project supported by the National Natural Science Foundation ofChina (No. 50079026) and Doctoral Subject Research Fund of Min-istry of Education (No. 20030335027) China
文摘Terzaghi gave a theory of soil consolidation based on the effective stress principle, which was derived on several ideal assumptions to get a simplified theory. To avoid the limitations involved in Terzaghi’s theory, many efforts are being made by scholars to solve the problems in practical engineering situations. This paper presents a generalized theory for one dimensional consolidation of saturated soft clay with variable compressibility and permeability. The semi-analytical solution presented here takes into account the well known empirical e-logk and e-logp′(σ′) relations under instantaneous loading. Study of the consolida- tion behaviors showed that the ratio of Cc and Ck (the slope of e-logp and e-logk respectively) govern the ratio of consolidation. A simulative laboratory investigation with GDS advanced consolidation system was made to analyze the clay consolidation process and compare the results with the semi-analytical solution.
基金the National University of Malaysia (Universiti Kebangsaan Malaysia, UKM)the Ministry of Education (MOE) of Malaysia for the financial support received under research grant DIP-2016-007
文摘Thixoforming is a processing method that deforms metal in a semisolid state.The advantages of this process include the production of parts with good surface finish,fine microstructures and superior mechanical properties.However,the process mostly produces parts from aluminium cast grades,thereby not fully utilising the true potential of this method.Hence,thermodynamic modelling can be used to formulate alloy compositions that favour this processing method.Here,the effects of reducing copper content and increasing silicon and magnesium contents on the thixoformability of aluminium alloy 2014 were presented.The work consists of both the modelling and experimental validation.Results showed that by increasing Si and decreasing Cu content in the alloy,the solidification interval temperature was decreased and the temperature working window between the stipulated liquid fractions was widened,two of the characteristics favouring the process.A high solid-solution temperature employed resulted in the dissolution of unfavourable Mg2Si compound.An increase in Mg content used also resulted in the formation of the compactπ-Al8FeMg3Si6 phase and the decrease in the amount of the sharp and plate-like structure of theβ-Al5FeSi phase,improving the strength of the modified alloy.Subsequent T6 heat treatment successfully further increased the strength of the modified alloy.
基金Projects(50774026, 50875059) supported by the National Natural Science Foundation of ChinaProject(20070420023) supported by the China Postdoctoral Science FoundationProject(2008AA03A239) supported by the National High-tech Research and Development Program of China
文摘Tensile properties of as-deformed 2A50 aluminum alloy were investigated in the high temperature solid and semi-solid states. The results show that temperature has almost no effect on the maximum tensile stress between 500 ℃ and 530 ℃, and the maximum tensile stress decreases rapidly when the temperature is above 532 ℃. The ductility decreases with increasing temperature and has an obvious fall when the temperature is above solidus temperature. This alloy almost has no ductility above 537 ℃, and cannot sustain tensile stress above 550℃. A brittle temperature range in which this alloy is prone to form microcracks was derived. The relation between microstructure, fraction solid and tensile properties were also investigated by examining the metallograph and fracture surface morphology of tested specimens, which could provide reference for forecasting the microcracks in this alloy occurring in semi-solid processing.
基金Project(51571039) supported by the National Natural Science Foundation of China
文摘The solidification microstructure,fracture morphologies,and mechanical properties of an Al-18Si alloy and alloys modified with Al-5Ti and Al-3P master alloys were investigated using an optical microscope,scanning electron microscope,and an electronic universal testing machine.The results show that additions of Al-5Ti and Al-3P have significant effects on the size and area fraction of the primary Si and the mechanical properties of the Al-18Si alloy.Compared to the Al-18Si alloy modified with 0.6 wt%Al-5Ti at 850°C,when the Al-18Si alloy was modified with 0.3 wt%Al-5Ti and 0.5 wt%Al-3P at the same temperature,the average size of the primary Si decreased from 39 to 14μm and the area fraction increased from 9.5%to 11.6%.The biggest influencing factor on the tensile strength and elongation of the Al-18Si alloy is the addition of Al-3P,followed by the modification temperature and the addition of Al-5Ti.At a modification temperature of 850°C,the tensile strength and elongation of the Al-18Si alloy modified with 0.3 wt%Al-5Ti+0.5 wt%Al-3P increased by 19.6%and 88.6%,respectively compared to that of the Al-18Si alloy modified with 0.6 wt%Al-5Ti.
基金Financial supports for this work, provided by the National Natural Science Foundation of China (No. 51274097)the Scientific Research Fund of Hunan Provincial Education Department of China (No. 13A020)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining, CUMT (No. 13KF03)
文摘In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.
文摘The deformation, of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Blot' s consolidation theory. With the increase in time of loading, the damage accumulation becomes larger. Under the centre and toe of embankment, damage becomes serious. Under the centre of embankment, vertical damage values are bigger than horizontal ones. Under the toe of embankment, horizontal damage values are bigger than vertical ones.
基金Science and Technology Corporation Innovation Fund of China(02C26211100499) PH.D Program Fund(20020290011)
文摘In order to solve transport problems of industry solid,firstly,a new applicationnotion of pipeline transport was presented,that is to say,combining pretreatment andtransport with disposal techniques of industry solid waste.Secondly,the integrated dis-posal and transport system for industry solid waste was introduced,in particular,the oper-ating principles,equipment set-up,key technology and technical parameters.Next,thispaper illustrated the application of this integrated system.Such as it can transport coalsludge with sufficiently high solids content(about 72%~77%)and high apparent viscosity(about 1 000~3 000 Pa.s)directly by pipeline having no use for water and addition agent.Generally,the transport distance is about 1 000 m.This system has been successfullyused in innocuous disposition and efficient utilization of other industrial byproducts or solidwastes,such as city sludge and paper making waste.The integrated system causes nopollution to the environment for its complete seal and realizes protecting the environment,conserving the energy,promoting the development of cycling economic.Finally,the paperdiscussed the research works that were needed for studying such pipeline transport sys-tem and narrates the relevant condition and application status.
基金Supported by Marie Curie International Incoming Fellowship (No. PIIF-GA-2009-253453)
文摘A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.
基金financially supported by the National Natural Science Foundation of China(Nos.51704084,52074131)the Science and Technology Plan of Guizhou Province,China(Nos.ZK2021(267),ZK2021(067))the Cultivation Project of Guizhou University,China(No.2019(23))。
文摘The differences in the microstructure and elevated temperature tensile properties of gravity die cast,squeeze cast,and semi-solid thixoformed Al-Si-Cu-Mn-Fe alloys after thermal exposure at 300℃were discussed.The results demonstrate that the elevated temperature tensile properties of semi-solid thixoformed alloys were significantly higher than those of gravity die cast and squeeze cast alloys,especially after thermal exposure for 100 h.The ultimate tensile strength(UTS)of semi-solid thixoformed alloys after thermal exposure at 300℃for 0.5,10 and 100 h were 181,122 and 110 MPa,respectively.The UTS values of semi-solid thixoformed alloys were higher than those of heat resistant aluminum alloys used in commercial applications.The enhanced elevated temperature tensile properties of semi-solid thixoformed experimental alloys after thermal exposure can be attributed to the combined reinforcement of precipitation strengthening and grain boundary strengthening due to thermally stable intermetallic phases as well as suitable grain size.
基金Supported by the National Natural Science Foundation of China(40272133) and Natural Science Foundation of Beijing(8022005, 8062007)
文摘With FLAC, a criteria of stress release ratio (SRR), i.e., about 10% of the relative difference of the ground settlement before and after the supporting system is installed, is incorporated into stress release method (SRM). At the same time, the Mohr-Coulomb Criterion is used to analyze stress changes around the tunnel induced by excavation. It shows that the surrounding soil around shallow tunnels can be partitioned by loosened zones (unloading zones) and plastic zones among which the shear stresses in the soil are less than 10 kPa below the M-C yield line. Both types of zones are separated. With the increasing of the SRR, the areas of plastic zones and loosen zones gradually increase. The surrounding soil is equally divided into 24 regions in order to study the influence of different grouting regions on the ground settlement. The reinforcing effect of grouting can be modeled by enhancement of the soil strength around the tunnel. By the approach of the SRM, numerical analysis indicates that, in the upper area (top of the surrounding soil about 210°), the reinforcing effect gradually decreases as the reinforcing region moves from arch springing to the vault of the crown; when reinforcing regions lie in the upside of the surrounding soil, the influence on the ground settlement is generally greater than in the lower part; at the same time, with the increase of the SRR, the influential differences are more and more obvious.
基金Project(2006CB605203) supported by National Basic Research Program of ChinaProject(2006AA03Z115) supported by the National High-tech Research and Development Program of ChinaProject(2006BAE04B09-4) supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period
文摘A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteristics of the rheo-diecasting components were investigated at different rotation speeds.Flow characteristics and microstructural evolution of the semi-solid slurry during the rheo-diecasting process were analyzed and the mechanical properties of the rheo-diecasting components were studied.The experimental results show that the process is able to obtain such components in which the primaryα-Mg particles are fine,nearly spherical and uniformly distributed in the matrix.When the rotation speed of internal taper barrel is 700 r/min,the primaryα-Mg particles get a mean diameter of about 45μm and a shape factor of about 0.81.The magnesium alloy melt has complex stirring-fixed flow characteristics when flowing in TBR machine.Compared with conventional die-casing process,the rheo-diecasting process can improve the mechanical properties of components;especially,the elongation is improved by 80%.
基金Supported by the National Basic Research Program of China (2009CB219906)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07080304)the International Science and Technology Cooperation Program (2011DFA61360)
文摘As the core of the Energy-Minimization Multi-Scale(EMMS) approach,the so-called stability condi-tion has been proposed to reflect the compromise between different dominant mechanisms and believed to be in-dispensable for understanding the complex nature of gas-solid fluidization systems.This approach was recently ex-tended to the study of gas-liquid bubble columns.In this article,we try to analyze the intrinsic similarity between gas-solid and gas-liquid systems by using the EMMS approach.First,the model solution spaces for the two systems are depicted through a unified numerical solution strategy,so that we are able to find three structural hierarchies in the EMMS model for gas-solid systems.This may help to understand the roles of cluster diameter correlation and stability condition.Second,a common characteristic of gas-solid and gas-liquid systems can be found by comparing the model solutions for the two systems,albeit structural parameters and stability criteria are specific in each system:two local minima of the micro-scale energy dissipation emerges simultaneously in the solution space of structure parameters,reflecting the compromise of two different dominant mechanisms.They may share an equal value at a critical condition of operating conditions,and the global minimum may shift from one to the other when the oper-ating condition changes.As a result,structure parameters such as voidage or gas hold-up exhibit a jump change due to this shift,leading to dramatic structure variation and hence regime transition of these systems.This demonstrates that it is the stability condition that drives the structure variation and system evolution,which may be the intrinsic similarity of gas-solid and gas-liquid systems.
文摘There is presented the review of publications connecting with creation of matrices for the immobilization of long-lived radionuclides and radioactive waste for storage and disposal, as well as for the transmutation. This paper substantiates the practicability and feasibility of obtaining the carbon matrces by carbonization of imidoderivatives.