The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interfa...The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interface morphologies transform alternately with increasing magnetic flux density (B≤10.3 mT). The interface morphology transforms from shallow cellular to deep cellular morphology under a weak downward TMF (B=3.2 mT). When the magnetic flux density increases further, both sides of the interface morphology appear to be slightly inconsistent, but they roughly tend to be planar under a strong downward TMF (BS10.3 mT). The interface instability may be attributed to the flow driven by the TMF. Moreover, the shape of interface appears to be almost flat under an upward TMF, but deflective under a downward TMF.展开更多
A kind of new idea based on electromagnetic theory is presented, and it is used in research of the shaping law of electrochemical perforation with fixed cathode. The changing laws of the electric field vectors at cert...A kind of new idea based on electromagnetic theory is presented, and it is used in research of the shaping law of electrochemical perforation with fixed cathode. The changing laws of the electric field vectors at certain point on the surface of the anode workpiece with machining time, such as the electric field intensity E , the current density j and so on, are introduced. The mathematical model of the perforating velocity is presented, moreover, the experimental result to verify it is given at the end of the paper.展开更多
基金Project(50774061) supported by the National Natural Science Foundation of ChinaProject(28-TP-2009) supported by the Research Fund of State Key Laboratory of Solidification Processing(NWPU),China
文摘The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interface morphologies transform alternately with increasing magnetic flux density (B≤10.3 mT). The interface morphology transforms from shallow cellular to deep cellular morphology under a weak downward TMF (B=3.2 mT). When the magnetic flux density increases further, both sides of the interface morphology appear to be slightly inconsistent, but they roughly tend to be planar under a strong downward TMF (BS10.3 mT). The interface instability may be attributed to the flow driven by the TMF. Moreover, the shape of interface appears to be almost flat under an upward TMF, but deflective under a downward TMF.
文摘A kind of new idea based on electromagnetic theory is presented, and it is used in research of the shaping law of electrochemical perforation with fixed cathode. The changing laws of the electric field vectors at certain point on the surface of the anode workpiece with machining time, such as the electric field intensity E , the current density j and so on, are introduced. The mathematical model of the perforating velocity is presented, moreover, the experimental result to verify it is given at the end of the paper.