An analytical model on the normal perforation of reinforced concrete slabs is constructed. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering, tunnellin...An analytical model on the normal perforation of reinforced concrete slabs is constructed. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering, tunnelling and shear plugging. Besides three dimensionless numbers, i. e., the impact function I, the geometry function of projectile N and the dimensionless thickness of concrete target X, which are employed to predict the ballistic performance of perforation of concrete slabs, the reinforcement ratio Ps of concrete and the tensile strength fs of reinforcing bars are considered as the other main factors influencing the perforation process. Simpler solutions of ballistic performances of normal perforation of reinforced concrete slabs are formulated. Theoretical predictions agree well with individual published experimental data.展开更多
基金Supported by the State Key Lab of Explosion Science and Technology of BIT Under Contract (No. KFJJ04-3)
文摘An analytical model on the normal perforation of reinforced concrete slabs is constructed. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering, tunnelling and shear plugging. Besides three dimensionless numbers, i. e., the impact function I, the geometry function of projectile N and the dimensionless thickness of concrete target X, which are employed to predict the ballistic performance of perforation of concrete slabs, the reinforcement ratio Ps of concrete and the tensile strength fs of reinforcing bars are considered as the other main factors influencing the perforation process. Simpler solutions of ballistic performances of normal perforation of reinforced concrete slabs are formulated. Theoretical predictions agree well with individual published experimental data.