The robustness ofA. awamori and A. oryzae as enzyme producers is exploited in fungal fermentation on agricultural solid waste. High-level production of extracellular glucoamylase, protease, cellulase and xylanase has ...The robustness ofA. awamori and A. oryzae as enzyme producers is exploited in fungal fermentation on agricultural solid waste. High-level production of extracellular glucoamylase, protease, cellulase and xylanase has been achieved. Three different types of 'waste' solids (wheat bran, soybean hulls and rapeseed meal) have been used in studies of solid state fermentation (SSF). The enzymes could be produced in significant levels by continuously supplying oxygen (02) through the tray system known as "closed" and "opened" tray systems. A perforated tray system was developed in this study that permits direct access to 02. Testing the tray system with different perforated mesh aperture sizes in this study did not yield different results in growth performance of A. awamori and A. oryzae. A. awamori and A. oryzae can be very versatile in producing various enzymes with different substrates with different starch, protein, hemiceilulose and cellulose contents. These studies indicate that A. awamori is more suitable for the efficient production of multiple enzymes in the closed system including xylanase and cellulase, while the production of glucoamylase and protease is superior in the opened system. A. oryzae is more suitable for the efficient production of protease and cellulase in the closed system, while the production of protease is more favourable the opened system. A. awamori efficiently consumed starch in wheat bran medium and produced very high glucoamylase activity, and after that, the fungus efficiently produced other enzymes to degrade other complex nutrients such as protein, hemicellulose and cellulose. Meanwhile, A. oryzae efficiently consumed protein in rapeseed meal and produced very high protease activity. The ability of both filamentous fungi, to convert biomass through SSF bioconversion will have a great impact on food and agro-industry in every aspect of life from food and medicine to fuel.展开更多
Civil construction is one of the largest consumers of raw materials and producers of waste, which has been causing environmental problems both through the extraction of raw materials and through building activity by g...Civil construction is one of the largest consumers of raw materials and producers of waste, which has been causing environmental problems both through the extraction of raw materials and through building activity by generation of waste. Notwithstanding the need to find an optimum use for solid construction residue to try to solve or minimize this problem, there are no standards for the process of obtaining the CDR (construction and demolition residue). Thus, the aim of this study was to develop a method of collecting solid waste at the construction site that is easy and low-cost and thus can be applied throughout the construction industry. This collection method was designed to produce residue with the desired proprieties and obtain the best possible homogeneity. This method permitted to evaluate the factors generating construction residue more precisely.展开更多
The increasing of tapioca production nowadays effected the production of waste. The waste of tapioca industries consists of two kinds, which were liquid waste and solid waste. Further more, tapioca solid waste treatme...The increasing of tapioca production nowadays effected the production of waste. The waste of tapioca industries consists of two kinds, which were liquid waste and solid waste. Further more, tapioca solid waste treatment was ineffective. Weather solid waste produced from the extraction process still contains high concentration of starch that can be used to produce high quality product, for example, bio ethanol or other alternative energy sources. Objective of these experimental work was utilizing solid waste of tapioca industries and looking for the exactly composition of n-amylase and gluco-amylase enzymes on the hydrolysis processes of the solid waste of tapioca. The exact composition from both enzymes can be expected to increase the yield of glucose. Variables of cx-amylase enzyme for this research were 0.3% (w/w) and 0.5% (w/w) with liquefaction time were 1 hour and 1.5 hours, and variables of glucoamylase enzyme were 0.3% (w/w) and 0.5% (w/w). To achieve these goals, the experimental work was held in laboratory scale with batch process. Firstly, tapioca solid waste was pretreated at 90 ~C and added u-amylase enzyme for 1 hour and 1.5 hours (variable of liquefaction time). Then, substrate was cooled down to 60 ~C added with proposed variables of glucoamylase enzyme, and was analysed 24 hours after added. This experiment showed the best ratio between a-amylase and glucoamylase enzymes 0.5%:0.5% with 1 hour of liquefaction time. The highest glucose reaches 8.468% and yields 0.892 (g glucose/g starch) with starch conversion of 59.94%. KM = 0.0468 g/mL and rmax = 0.311 g/mL·h,展开更多
Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based dir...Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based direct reduction process of iron ore is a by-product and its suitable utilization is not available so far. In order to handle it properly, the characteristics of this by-product were comprehensively investigated. A series of analysis methods were used to demonstrate its mineral compositions, petrography and physico-chemical properties. The results reveal that the semi-coke has poor washability. The fixed carbon content of semi-coke reaches 76.11% and the gross calorific value is 28.10 MJ/kg, both of which are similar to those of traditional sinter coke breeze. Also, semi-coke ash possesses lower content of SiO2, Al2O3, S and higher content of CaO and MgO, which could improve the strength of sinter ore when partially substituting for coke breeze in sintering. Semi-coke features well-development porous structure and higher reaction activity, which predicts that the sintering speed could be elevated to some extent when employing it as a partial replacement of coke breeze, so the studies further suggest that the potential adverse effect of the high reactivity on sintering process could be weakened by adequately coarsening the semi-coke's particle size.展开更多
文摘The robustness ofA. awamori and A. oryzae as enzyme producers is exploited in fungal fermentation on agricultural solid waste. High-level production of extracellular glucoamylase, protease, cellulase and xylanase has been achieved. Three different types of 'waste' solids (wheat bran, soybean hulls and rapeseed meal) have been used in studies of solid state fermentation (SSF). The enzymes could be produced in significant levels by continuously supplying oxygen (02) through the tray system known as "closed" and "opened" tray systems. A perforated tray system was developed in this study that permits direct access to 02. Testing the tray system with different perforated mesh aperture sizes in this study did not yield different results in growth performance of A. awamori and A. oryzae. A. awamori and A. oryzae can be very versatile in producing various enzymes with different substrates with different starch, protein, hemiceilulose and cellulose contents. These studies indicate that A. awamori is more suitable for the efficient production of multiple enzymes in the closed system including xylanase and cellulase, while the production of glucoamylase and protease is superior in the opened system. A. oryzae is more suitable for the efficient production of protease and cellulase in the closed system, while the production of protease is more favourable the opened system. A. awamori efficiently consumed starch in wheat bran medium and produced very high glucoamylase activity, and after that, the fungus efficiently produced other enzymes to degrade other complex nutrients such as protein, hemicellulose and cellulose. Meanwhile, A. oryzae efficiently consumed protein in rapeseed meal and produced very high protease activity. The ability of both filamentous fungi, to convert biomass through SSF bioconversion will have a great impact on food and agro-industry in every aspect of life from food and medicine to fuel.
文摘Civil construction is one of the largest consumers of raw materials and producers of waste, which has been causing environmental problems both through the extraction of raw materials and through building activity by generation of waste. Notwithstanding the need to find an optimum use for solid construction residue to try to solve or minimize this problem, there are no standards for the process of obtaining the CDR (construction and demolition residue). Thus, the aim of this study was to develop a method of collecting solid waste at the construction site that is easy and low-cost and thus can be applied throughout the construction industry. This collection method was designed to produce residue with the desired proprieties and obtain the best possible homogeneity. This method permitted to evaluate the factors generating construction residue more precisely.
文摘The increasing of tapioca production nowadays effected the production of waste. The waste of tapioca industries consists of two kinds, which were liquid waste and solid waste. Further more, tapioca solid waste treatment was ineffective. Weather solid waste produced from the extraction process still contains high concentration of starch that can be used to produce high quality product, for example, bio ethanol or other alternative energy sources. Objective of these experimental work was utilizing solid waste of tapioca industries and looking for the exactly composition of n-amylase and gluco-amylase enzymes on the hydrolysis processes of the solid waste of tapioca. The exact composition from both enzymes can be expected to increase the yield of glucose. Variables of cx-amylase enzyme for this research were 0.3% (w/w) and 0.5% (w/w) with liquefaction time were 1 hour and 1.5 hours, and variables of glucoamylase enzyme were 0.3% (w/w) and 0.5% (w/w). To achieve these goals, the experimental work was held in laboratory scale with batch process. Firstly, tapioca solid waste was pretreated at 90 ~C and added u-amylase enzyme for 1 hour and 1.5 hours (variable of liquefaction time). Then, substrate was cooled down to 60 ~C added with proposed variables of glucoamylase enzyme, and was analysed 24 hours after added. This experiment showed the best ratio between a-amylase and glucoamylase enzymes 0.5%:0.5% with 1 hour of liquefaction time. The highest glucose reaches 8.468% and yields 0.892 (g glucose/g starch) with starch conversion of 59.94%. KM = 0.0468 g/mL and rmax = 0.311 g/mL·h,
基金Project(2011GH561685)supported by the China Torch Program
文摘Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based direct reduction process of iron ore is a by-product and its suitable utilization is not available so far. In order to handle it properly, the characteristics of this by-product were comprehensively investigated. A series of analysis methods were used to demonstrate its mineral compositions, petrography and physico-chemical properties. The results reveal that the semi-coke has poor washability. The fixed carbon content of semi-coke reaches 76.11% and the gross calorific value is 28.10 MJ/kg, both of which are similar to those of traditional sinter coke breeze. Also, semi-coke ash possesses lower content of SiO2, Al2O3, S and higher content of CaO and MgO, which could improve the strength of sinter ore when partially substituting for coke breeze in sintering. Semi-coke features well-development porous structure and higher reaction activity, which predicts that the sintering speed could be elevated to some extent when employing it as a partial replacement of coke breeze, so the studies further suggest that the potential adverse effect of the high reactivity on sintering process could be weakened by adequately coarsening the semi-coke's particle size.