期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
关于钨和钼碳化物的快速复分解方法
1
作者 张德尧 《稀有金属快报》 CSCD 1999年第12期10-11,共2页
关键词 固态复合解 碳化物
下载PDF
A novel coral-like garnet for high-performance PEO-based all solid-state batteries 被引量:2
2
作者 Jun Cheng Guangmei Hou +8 位作者 Qing Sun Qiong Chen Deping Li Jianwei Li Zhen Zeng Kaikai Li Qunhui Yuan Jiajun Wang Lijie Ci 《Science China Materials》 SCIE EI CAS CSCD 2022年第2期364-372,共9页
As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The ap... As one of the most promising next-generation energy storage devices,the lithium-metal battery has been extensively investigated.However,safety issues and undesired lithium dendrite growth hinder its development.The application of solid-state electrolytes has attracted increasing attention as they can solve safety issues and show great potential to inhibit the growth of lithium dendrites.Polyethylene oxide(PEO)-based electrolytes are very promising due to their enhanced safety and excellent flexibility.However,they suffer from low ionic conductivity at room temperature and cannot effectively inhibit lithium dendrites at high temperatures due to the intrinsic semicrystalline properties and poor mechanical strength.In this work,a novel coral-like Li_(6.25)Al_(0.25)La_(3)Zr_(2)O_(12)(C-LALZO)is synthesized to serve as an active ceramic filler in PEO.The PEO with LALZO coral(PLC)exhibits increased ionic conductivity and mechanical strength,which leads to uniform deposition/stripping of lithium metal.The Li symmetric cells with PLC do not cause a short circuit after cycling for 1500 h at 60℃.The assembled LiFePO_(4)/PLC/Li batteries display excellent cycling stability at both 60 and 50℃.This work reveals that the electrochemical properties of the composite electrolyte can be effectively improved by tuning the microstructure of the filler,such as the C-LALZO architecture. 展开更多
关键词 coral-like garnet composite solid-state electrolyte all-solid-state battery
原文传递
Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte 被引量:6
3
作者 Jiulin Hu Keyi Chen +1 位作者 Zhenguo Yao Chilin Li 《Science Bulletin》 SCIE EI CSCD 2021年第7期694-707,M0004,共15页
Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a ... Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a big challenge. The phase transformation at cathode and Li deformation at anode would usually deactivate the electrode-electrolyte interfaces. Herein, we propose an all-solid-state Li-FeF_(3) conversion battery reinforced by hierarchical microsphere stacked polymer electrolyte for the first time. This gC_(3)N_(4) stuffed polyethylene oxide(PEO)-based electrolyte is lightweight due to the absence of metal element doping, and it enables the spatial confinement and dissolution suppression of conversion products at soft cathode-polymer interface, as well as Li dendrite inhibition at filler-reinforced anode-polymer interface. Two-dimensional(2 D)-nanosheet-built porous g-C_(3)N_(4) as three-dimensional(3 D) textured filler can strongly cross-link with PEO matrix and Li TFSI(TFSI: bistrifluoromethanesulfonimide) anion, leading to a more conductive and salt-dissociated interface and therefore improved conductivity(2.5×10^(-4) S/cm at 60℃) and Li+transference number(0.69). The compact stacking of highly regular robust microspheres in polymer electrolyte enables a successful stabilization and smoothening of Li metal with ultra-long plating/striping cycling for at least 10,000 h. The corresponding Li/LiFePO_(4) solid cells can endure an extremely high rate of 12 C. All-solid-state Li/FeF_(3) cells show highly stabilized capacity as high as 300 m Ah/g even after 200 cycles and of 200 m Ah/g at extremely high rate of 5 C, as well as ultra-long cycling for at least 1200 cycles at 1 C. High pseudocapacitance contribution(>55%) and diffusion coefficient(as high as10^(-12) cm^(2)/s) are responsible for this high-rate fluoride conversion. This result provides a promising solution to conversion-type Li metal batteries of high energy and safety beyond Li-S batteries, which are difficult to realize true "all-solid-state" due to the indispensable step of polysulfide solid-liquid conversion. 展开更多
关键词 All-solid-state batteries Conversion fluoride cathode Li dendrite suppression Polymer electrolyte C-N filler reinforcement
原文传递
A strong Lewis acid imparts high ionic conductivity and interfacial stability to polymer composite electrolytes towards all-solid-state Li-metal batteries 被引量:3
4
作者 Litong Wang Yunlei Zhong +7 位作者 Zhaorui Wen Chaowei Li Jingxin Zhao Mingzheng Ge Pengfei Zhou Yanyan Zhang Yuxin Tang Guo Hong 《Science China Materials》 SCIE EI CAS CSCD 2022年第8期2179-2188,共10页
The development of high-performance solid polymer electrolytes is crucial for producing all-solid-state lithium metal batteries with high safety and high energy density.However,the low ionic conductivity of solid poly... The development of high-performance solid polymer electrolytes is crucial for producing all-solid-state lithium metal batteries with high safety and high energy density.However,the low ionic conductivity of solid polymer electrolytes and their unstable electrolyte/electrode interfaces have hindered their widespread utilization.To address these critical challenges,a strong Lewis acid(aluminum fluoride(AIF_(3)))with dual functionality is introduced into poly(ethylene oxide)(PEO)-based polymer electrolyte.The AlF;facilitates the dissociation of lithium salt,increasing the iontransfer efficiency due to the Lewis acid-base interaction;further the in-situ formation of lithium fluoride-rich interfacial layer is promoted,which suppresses the uneven lithium deposition and continuous undesired reactions between the Li metal and PEO matrix.Benefiting from our rational design,the symmetric Li/Li battery with the modified electrolyte exhibits much longer cycling stability(over 3600 h)than that of the pure PEO/lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)electrolyte(550 h).Furthermore,the all-solid-state LiFeP04 full cell with the composite electrolyte displays a much higher Coulombic efficiency(98.4%after 150 cycles)than that of the electrolyte without the AlF;additive(63.3%after 150 cycles)at a large voltage window of 2.4-4.2 V,demonstrating the improved interface and cycling stability of solid polymer lithium metal batteries. 展开更多
关键词 all-solid-state battery composite electrolyte interfaces Li-ion conductivity polyethylene oxide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部