An in situ reaction and spray forming technique were employed in the synthesis of 2% TiB2/Si-30Al composite.The formation mechanism of TiB2 particulates was explained based on thermodynamic theory.The modification of ...An in situ reaction and spray forming technique were employed in the synthesis of 2% TiB2/Si-30Al composite.The formation mechanism of TiB2 particulates was explained based on thermodynamic theory.The modification of the primary Si in the Si-30Al alloy was interpreted in the light of the knowledge of atomic diffusion.The experimental results show that adding 2% TiB2 to the Si-30Al alloy can effectively refine the primary Si.Moreover,the coarsening and growth of primary Si phase in its semi-solid state was retarded effectively due to the existence of the TiB2 particulates.展开更多
The Al-27%Si alloy was prepared by the spray forming process,and its microstructure evolution during the semisolid reheating process was investigated.The results show that,the primary Si phase coarsens during the rehe...The Al-27%Si alloy was prepared by the spray forming process,and its microstructure evolution during the semisolid reheating process was investigated.The results show that,the primary Si phase coarsens during the reheating process and the coarsening rate increases with the increase of reheating temperature.The eutectic phase is produced in the molten region when quenched in the cold water.The microstructure evolution in the semisolid state can be divided into three stages.The remarkable characteristic of the first stage is only a solid-state phase transformation process.However,the region around the α(Al) matrix gradually melts in the second stage.The primary Si in the liquid phase coarsens obviously,and the eutectic phase is produced in the molten region when the specimens are quenched in cold water.In the last stage,the same thing as that in the second stage happens except that all the α(Al) matrixes are melted.展开更多
SY509-3-176 [篇名] A new metal spray option: very fine grain size and no heat distortion of the workpiece are among the benefits of a new solid-state deposition technique;SY509-3-177 [篇名] A rapid manufacturing meth...SY509-3-176 [篇名] A new metal spray option: very fine grain size and no heat distortion of the workpiece are among the benefits of a new solid-state deposition technique;SY509-3-177 [篇名] A rapid manufacturing method for water-saving emitters for crop irrigation based on rapid prototyping and manufacturing;……展开更多
Lithium(Li)metal is considered as the candidate for the next generation of Li metal battery(LMB)anodes due to its high capacity and the lowest potential,which is expected to meet the requirements of energy storage dev...Lithium(Li)metal is considered as the candidate for the next generation of Li metal battery(LMB)anodes due to its high capacity and the lowest potential,which is expected to meet the requirements of energy storage devices.Unfortunately,the uncontrollable growth of Li dendrites during the charge/discharge process,as well as the resulting problems of poor cycling stability,low coulomb efficiency and safety risk,has restricted the commercialization of Li anode.Herein,an in-situ interfacial film containing three-dimensional(3D)rod-like micron-structure silver(Ag)is constructed on the surface of the Li metal.Due to the 3D rod-like micron-structure used to homogenize the distribution of current density,achieving uniform nucleation and growth of electrodeposited Li,the produced Li-Ag alloy was employed to restrain the formation of“dead”Li and the in-situ formed LiNO_(3) was utilized to facilitate the stability of solid-electrolyte interface(SEI)film,so the growth of dendritic Li is suppressed via the synergistic effect of structure and surface chemistry regulation.The obtained Li anode can achieve cycling stability at a high current density of 10 mA/cm^(2).This work considers multiaspect factors inducing uniform Li electrodeposition,and provides new insights for the commercialization of LMB.展开更多
Flexible and micro-sized energy conversion/storage components are extremely demanding in portable and multifunctional electronic devices, especially those small,flexible, roll-up and even wearable ones. Here in this p...Flexible and micro-sized energy conversion/storage components are extremely demanding in portable and multifunctional electronic devices, especially those small,flexible, roll-up and even wearable ones. Here in this paper, a two-step electrochemical deposition method has been developed to coat Ni fibers with reduced graphene oxide and MnO2 subsequently, giving rise to Ni@reduced-graphene-oxide@MnO2 sheath-core flexible electrode with a high areal specific capacitance of 119.4 mF cm^-2 at a current density of 0.5 mA cm^-2 in 1 mol L^-1 Na2SO4 electrolyte. Using polyvinyl alcohol(PVA)-LiCl as a solid state electrolyte, two Ni@reduced-grapheneoxide@Mn02 flexible electrodes were assembled into a freestanding, lightweight, symmetrical fiber-shaped micro-supercapacitor device with a maximum areal capacitance of26.9 mF cm^-2. A high power density of 0.1 W cm^-3 could be obtained when the energy density was as high as0.27 mW h cm^-3. Moreover, the resulting micro-supercapacitor device also demonstrated good flexibility and high cyclic stability. The present work provides a simple, facile and low-cost method for the fabrication of flexible, lightweight and wearable energy conversion/storage micro-devices with a high-performance.展开更多
基金Project(707007)supported by the Cultivation Fund of the Key Scientific and Technical Innovation,ChinaProject(2093040)supported by Beijing Municipal Natural Science Foundation,China
文摘An in situ reaction and spray forming technique were employed in the synthesis of 2% TiB2/Si-30Al composite.The formation mechanism of TiB2 particulates was explained based on thermodynamic theory.The modification of the primary Si in the Si-30Al alloy was interpreted in the light of the knowledge of atomic diffusion.The experimental results show that adding 2% TiB2 to the Si-30Al alloy can effectively refine the primary Si.Moreover,the coarsening and growth of primary Si phase in its semi-solid state was retarded effectively due to the existence of the TiB2 particulates.
基金Project (JPPT-125-GH-039) supported by Ministry of Science and Technology of China
文摘The Al-27%Si alloy was prepared by the spray forming process,and its microstructure evolution during the semisolid reheating process was investigated.The results show that,the primary Si phase coarsens during the reheating process and the coarsening rate increases with the increase of reheating temperature.The eutectic phase is produced in the molten region when quenched in the cold water.The microstructure evolution in the semisolid state can be divided into three stages.The remarkable characteristic of the first stage is only a solid-state phase transformation process.However,the region around the α(Al) matrix gradually melts in the second stage.The primary Si in the liquid phase coarsens obviously,and the eutectic phase is produced in the molten region when the specimens are quenched in cold water.In the last stage,the same thing as that in the second stage happens except that all the α(Al) matrixes are melted.
文摘SY509-3-176 [篇名] A new metal spray option: very fine grain size and no heat distortion of the workpiece are among the benefits of a new solid-state deposition technique;SY509-3-177 [篇名] A rapid manufacturing method for water-saving emitters for crop irrigation based on rapid prototyping and manufacturing;……
基金Projects(51974256,51804259)supported by the National Natural Science Foundation of ChinaProject(2019ZDLGY04-05)supported by the Key R&D Program of Shaanxi,China+6 种基金Projects(2019JLZ-01,2019JLM-29,2020JQ-189)supported by the Natural Science Foundation of Shaanxi,ChinaProject(2019JC-12)supported by the Outstanding Young Scholars of Shaanxi,ChinaProject(2019-TS-06)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NPU),ChinaProjects(19GH020302,3102019JC005)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2018M641015)supported by the China Postdoctoral Science FoundationProject(BK20180191)supported by the Natural Science Foundation of Jiangsu,ChinaProject(CX202026)supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China。
文摘Lithium(Li)metal is considered as the candidate for the next generation of Li metal battery(LMB)anodes due to its high capacity and the lowest potential,which is expected to meet the requirements of energy storage devices.Unfortunately,the uncontrollable growth of Li dendrites during the charge/discharge process,as well as the resulting problems of poor cycling stability,low coulomb efficiency and safety risk,has restricted the commercialization of Li anode.Herein,an in-situ interfacial film containing three-dimensional(3D)rod-like micron-structure silver(Ag)is constructed on the surface of the Li metal.Due to the 3D rod-like micron-structure used to homogenize the distribution of current density,achieving uniform nucleation and growth of electrodeposited Li,the produced Li-Ag alloy was employed to restrain the formation of“dead”Li and the in-situ formed LiNO_(3) was utilized to facilitate the stability of solid-electrolyte interface(SEI)film,so the growth of dendritic Li is suppressed via the synergistic effect of structure and surface chemistry regulation.The obtained Li anode can achieve cycling stability at a high current density of 10 mA/cm^(2).This work considers multiaspect factors inducing uniform Li electrodeposition,and provides new insights for the commercialization of LMB.
基金supported by the Ministry of Education of China (IRT1148)the National Natural Science Foundation of China (51772157 and 21173116)+3 种基金Synergistic Innovation Center for Organic Electronics and Information Displays,Jiangsu Province "Six Talent Peak" (2015-JY-015)Jiangsu Provincial Natural Science Foundation (BK20141424)the Program of Nanjing University of Posts and Telecommunications (NY214088)the Open Research Fund of State Key Laboratory of Bioelectronics of Southeast University (12015010)
文摘Flexible and micro-sized energy conversion/storage components are extremely demanding in portable and multifunctional electronic devices, especially those small,flexible, roll-up and even wearable ones. Here in this paper, a two-step electrochemical deposition method has been developed to coat Ni fibers with reduced graphene oxide and MnO2 subsequently, giving rise to Ni@reduced-graphene-oxide@MnO2 sheath-core flexible electrode with a high areal specific capacitance of 119.4 mF cm^-2 at a current density of 0.5 mA cm^-2 in 1 mol L^-1 Na2SO4 electrolyte. Using polyvinyl alcohol(PVA)-LiCl as a solid state electrolyte, two Ni@reduced-grapheneoxide@Mn02 flexible electrodes were assembled into a freestanding, lightweight, symmetrical fiber-shaped micro-supercapacitor device with a maximum areal capacitance of26.9 mF cm^-2. A high power density of 0.1 W cm^-3 could be obtained when the energy density was as high as0.27 mW h cm^-3. Moreover, the resulting micro-supercapacitor device also demonstrated good flexibility and high cyclic stability. The present work provides a simple, facile and low-cost method for the fabrication of flexible, lightweight and wearable energy conversion/storage micro-devices with a high-performance.