期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
阳离子基阻变存储器的研究进展 被引量:1
1
作者 刘琦 刘森 +2 位作者 龙世兵 吕杭炳 刘明 《中国材料进展》 CAS CSCD 北大核心 2017年第2期81-87,共7页
基于电荷存储的传统非易失存储技术越来越难以满足大数据时代对海量信息的存储需求,亟需发展基于新材料、新原理的非易失存储技术。基于阳离子电化学效应的阻变存储器具有结构简单、速度快、功耗低、可缩小性好、易于三维集成等优点,被... 基于电荷存储的传统非易失存储技术越来越难以满足大数据时代对海量信息的存储需求,亟需发展基于新材料、新原理的非易失存储技术。基于阳离子电化学效应的阻变存储器具有结构简单、速度快、功耗低、可缩小性好、易于三维集成等优点,被认为是下一代非易失存储器的有力竞争者。然而,器件参数离散性大以及阻变机制不清晰严重阻碍了该类器件的快速发展。近几年,国内外学者通过材料和结构的优化设计显著提高了器件的性能,借助先进的表征技术阐明了器件电阻转变的微观机制,为阳离子基阻变存储器的大规模生产和应用奠定了科学基础。从材料改性、器件结构设计和微观机制表征三个方面综述了阳离子基阻变存储器的研究进展,并对其未来的研究方向和发展趋势进行了展望。 展开更多
关键词 非易失存储器 阻变存储器 固态电解液 电化学效应 导电细丝
下载PDF
解决聚合物锂离子电池气胀现象的新方法 被引量:3
2
作者 成夙 俞泽民 《化学工程师》 CAS 2006年第6期51-53,共3页
采用气相色谱与质谱联机的方法,对聚合物锂离子电池气胀现象的机理进行了研究,引入电解液添加剂VC(1,2-二亚乙烯基碳酸酯)进行自由基链式聚合反应,生成聚烷基碳酸锂化合物。从而有效地捕捉了由于电解液分解产生的烷基自由基,消除了气体... 采用气相色谱与质谱联机的方法,对聚合物锂离子电池气胀现象的机理进行了研究,引入电解液添加剂VC(1,2-二亚乙烯基碳酸酯)进行自由基链式聚合反应,生成聚烷基碳酸锂化合物。从而有效地捕捉了由于电解液分解产生的烷基自由基,消除了气体产生的可能性,并且对正负极材料没有副作用。电池气胀现象得到了根本的改善,证明了气胀的自由基机理。 展开更多
关键词 聚合物锂离子电池 气胀 1 2-二亚乙烯基碳酸酯 自由基 固态电解液
下载PDF
含硼锂盐添加剂改善己二腈与石墨相容性的研究
3
作者 张晶晶 冯荷清 +5 位作者 孙金龙 王鹏 宋林虎 东红 李世友 赵冬妮 《浙江化工》 CAS 2022年第1期5-9,共5页
腈类溶剂作为锂离子电池高电压电解液体系常用溶剂之一,因其特殊的结构和较高的还原电位,不能在石墨负极表面形成较好的表面钝化膜,从而造成腈类溶剂很难在高电压全电池体系中得以应用。为了解决上述问题,本文使用含硼锂盐双草酸硼酸锂(... 腈类溶剂作为锂离子电池高电压电解液体系常用溶剂之一,因其特殊的结构和较高的还原电位,不能在石墨负极表面形成较好的表面钝化膜,从而造成腈类溶剂很难在高电压全电池体系中得以应用。为了解决上述问题,本文使用含硼锂盐双草酸硼酸锂(LiBOB)和二氟草酸硼酸锂(LiDFOB)作为电解液添加剂,通过优化电极/电解液界面膜,解决因己二腈与石墨相容性差而导致电池容量衰减的问题。 展开更多
关键词 锂离子电池 石墨 己二腈 含硼添加剂 固态电解液界面(SEI)膜 相容性
下载PDF
起动用胶体蓄电池性能的初步研究
4
作者 陈卫东 张新华 陈红雨 《蓄电池》 1993年第2期9-11,14,共4页
一、前言 由于铅酸蓄电池易漏酸、使用维护不便等缺点,国外发达国家以固态电解液作为新型材料相继研制开发出了固定型胶体密封电池、胶体电动汽车电池等新产品。如德国阳光公司、英国Crompton-Parkinson公司等研制的胶体电池的性能都较... 一、前言 由于铅酸蓄电池易漏酸、使用维护不便等缺点,国外发达国家以固态电解液作为新型材料相继研制开发出了固定型胶体密封电池、胶体电动汽车电池等新产品。如德国阳光公司、英国Crompton-Parkinson公司等研制的胶体电池的性能都较理想。尽管如此,国外对起动用胶体蓄电池还处于探索阶段。 展开更多
关键词 胶体蓄电池 固态电解液 电池性能 电动汽车
全文增补中
Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries 被引量:15
5
作者 Shihan Qi Huaping Wang +6 位作者 Jian He Jiandong Liu Chunyu Cui Mingguang Wu Fang Li Yuezhan Feng Jianmin Ma 《Science Bulletin》 SCIE EI CSCD 2021年第7期685-693,M0004,共10页
Lithium(Li) metal is widely considered as a promising anode for next-generation lithium metal batteries(LMBs) due to its high theoretical capacity and lowest electrochemical potential. However, the uncontrollable form... Lithium(Li) metal is widely considered as a promising anode for next-generation lithium metal batteries(LMBs) due to its high theoretical capacity and lowest electrochemical potential. However, the uncontrollable formation of Li dendrites has prevented its practical application. Herein, we propose a kind of multifunctional electrolyte additives(potassium perfluorinated sulfonates) from the multi-factor principle for electrolyte additive molecular design(EDMD) view to suppress the Li dendrite growth. The effects of these additives are revealed through experimental results, molecular dynamics simulations and firstprinciples calculations. Firstly, K^(+)can form an electrostatic shield on the surface of Li anode to prevent the growth of Li dendrites. Secondly, potassium perfluorinated sulfonates can improve the activity of electrolytes as co-conductive salts, and lower the electro-potential of Li nucleation. Thirdly, perfluorinated sulfonate anions not only can change the Li^(+)solvation sheath structure to decrease the desolvation energy barrier and increase the ion migration rate, but also can be partly decomposed to form the superior solid electrolyte interphase(SEI). Benefited from the synergistic effects, an outstanding cycle life over250 h at 1 m A cm^(-2) is achieved in symmetric Li||Li cells. In particular, potassium perfluorinated sulfonate additives(e.g., potassium perfluorohexyl sulfonate, denoted as K+PFHS) can also contribute to the formation of high-quality cathode electrolyte interphase(CEI). As a result, Li||LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) full cells exhibit significantly enhanced cycling stability. This multi-factor principle for EDMD offers a unique insight on understanding the electrochemical behavior of ion-type electrolyte additives on both the Li metal anode and high-voltage cathode. 展开更多
关键词 ELECTROLYTE ADDITIVES Lithium metal batteries Lithium anode protection Potassium perfluorinated sulfonates
原文传递
Solvating power regulation enabled low concentration electrolyte for lithium batteries 被引量:4
6
作者 Linshan Peng Xiangkun Wu +6 位作者 Mengmin Jia Weiwei Qian Xiaoyan Zhang Na Zhou Lan Zhang Cuiying Jian Suojiang Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2022年第21期2235-2244,共10页
Li^(+) solvation structures have a decisive influence on the electrode/electrolyte interfacial properties and battery performances.Reduced salt concentration may result in an organic rich solid electrolyte interface(S... Li^(+) solvation structures have a decisive influence on the electrode/electrolyte interfacial properties and battery performances.Reduced salt concentration may result in an organic rich solid electrolyte interface(SEI)and catastrophic cycle stability,which makes low concentration electrolytes(LCEs)rather challenging.Solvents with low solvating power bring in new chances to LCEs due to the weak salt-solvent interactions.Herein,an LCE with only 0.25 mol L^(-1) salt is prepared with fluoroethylene carbonate(FEC)and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether(D_(2)).Molecular dynamics simulations and experiments prove that the low solvating power solvent FEC not only renders reduced desolvation energy to Li^(+) and improves the battery kinetics,but also promotes the formation of a LiF-rich SEI that hinders the electrolyte consumption.Li||Cu cell using the LCE shows a high coulombic efficiency of 99.20%,and LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)||Li cell also exhibits satisfying capacity retention of 89.93%in 200 cycles,which demonstrates the great potential of solvating power regulation in LCEs development. 展开更多
关键词 Lithium metal batteries Solvating power Low concentration electrolytes Desolvation energy FEC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部