The solid-liquid interracial morphology evolution was investigated in directional solidification (DS) of Al-1.5%Cu alloy (mass fraction). The results show that the solidified microstructural evolution is gradual o...The solid-liquid interracial morphology evolution was investigated in directional solidification (DS) of Al-1.5%Cu alloy (mass fraction). The results show that the solidified microstructural evolution is gradual other than sharp, and the microstructure patterns are interesting and diversiform at the pulling rate ranging from 30 μm/s to 1500 μm/s. Indeed, dendrite to cell transition follows this sequence: dendrites→→banded cellular dendrites→elongated cells and part of dendrites→main elongated cells and little dendrites. Moreover, the present microstructure is not normal microstructure as we saw before. Further, according to the experimental phenomenon, the dendrite to cell transition was studied theoretically. Dendrite tip shape is an important parameter to characterize the dendrite to cell transition. As the dendrite to cell transition is far from equilibrium solidification, non-equilibrium solidification is taken into consideration in calculation. Finally, it is speculated that the dendrite to cell transition would occur at the minimum tip radius.展开更多
In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embank...In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.展开更多
Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, no...Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, not only the volume compression ratio curve but also the extended Drucker-Prager linear model were obtained. In addition, through the friction strength tests, parameters of the Mohr-Coulomb model were gained, which proved in basic agreement with those of the extended Drucker-Prager linear model. Additionally, curves of the friction coefficients between the NMG and the sheet metal trader different pressures were also obtained. Based on the material performance experiments, numerical analysis in respect of flexible-die forming process with solid granule medium (SGM) was conducted. The die and device for experiments of solid granule medium forming (SGMF) on sheet metal were designed and manufactured. Typical parabolic parts were successfully trial-produced. The tests and simulation results show that the sheet formability is significantly improved for the extraordinary friction performance during interaction between the SGM and the sheet metal surface. The process control and die structure are simple, and the shaped work-pieces enjoy many advantages, such as satisfactory surface quality and favorable die fitability, which offers a brand-new method and means for processing and preparation of sheet metals.展开更多
Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properti...Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.展开更多
Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reve...Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reveal that high strength and low ductility are obtained in all semi-solid forged alloys. Tensile properties decrease as the semi-solid forging temperature increases, and cleavage fractures are observed after semi-solid forging at 1 050 °C. The variations in tensile properties are attributed to the coarse microstructures obtained in the semi-solid alloys. It is found that the elevated semi-solid temperatures lead to more liquid precipitates along the prior grain boundaries, which increases the peritectic precipitation and formation of Ti2Cu precipitation zones during re-solidification. Recrystallization heat treatment leads to fine microstructure of semi-solid forged alloys, resulting in improvement of tensile properties.展开更多
基金Project(SKLSP201418)supported by the Fund of the State Key Laboratory of Solidification Processing in North China University of Technology,ChinaProjects(51171151,51331005)supported by the National Natural Science Foundation of China
文摘The solid-liquid interracial morphology evolution was investigated in directional solidification (DS) of Al-1.5%Cu alloy (mass fraction). The results show that the solidified microstructural evolution is gradual other than sharp, and the microstructure patterns are interesting and diversiform at the pulling rate ranging from 30 μm/s to 1500 μm/s. Indeed, dendrite to cell transition follows this sequence: dendrites→→banded cellular dendrites→elongated cells and part of dendrites→main elongated cells and little dendrites. Moreover, the present microstructure is not normal microstructure as we saw before. Further, according to the experimental phenomenon, the dendrite to cell transition was studied theoretically. Dendrite tip shape is an important parameter to characterize the dendrite to cell transition. As the dendrite to cell transition is far from equilibrium solidification, non-equilibrium solidification is taken into consideration in calculation. Finally, it is speculated that the dendrite to cell transition would occur at the minimum tip radius.
基金The National Natural Science Foundation of China(No.51378121)
文摘In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.
基金Project(50775197)supported by the National Natural Science Foundation of China
文摘Certain non-metallic granules (NMG) were selected as the research object. It was proposed to conduct the volume compression experiments as well as those on the NMG physical properties at high stress levels. Then, not only the volume compression ratio curve but also the extended Drucker-Prager linear model were obtained. In addition, through the friction strength tests, parameters of the Mohr-Coulomb model were gained, which proved in basic agreement with those of the extended Drucker-Prager linear model. Additionally, curves of the friction coefficients between the NMG and the sheet metal trader different pressures were also obtained. Based on the material performance experiments, numerical analysis in respect of flexible-die forming process with solid granule medium (SGM) was conducted. The die and device for experiments of solid granule medium forming (SGMF) on sheet metal were designed and manufactured. Typical parabolic parts were successfully trial-produced. The tests and simulation results show that the sheet formability is significantly improved for the extraordinary friction performance during interaction between the SGM and the sheet metal surface. The process control and die structure are simple, and the shaped work-pieces enjoy many advantages, such as satisfactory surface quality and favorable die fitability, which offers a brand-new method and means for processing and preparation of sheet metals.
基金Project(51335009)supported by the National Natural Science Foundation of ChinaProject(2014JQ7273)supported by the Natural Science Foundation of Shaanxi Province of ChinaProject(CXY1514(1))supported by the Xi’an Science and Technology Plan Projects,China
文摘Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.
基金Projects (2005CCA06400, 2007CB613807) supported by the National Basic Research Program of ChinaProject (CHD2012JC078) supported by the Special Fund for Basic Scientific Research of Central Colleges, China+1 种基金Project (0111201) supported by the State Key Laboratory for Machanical Behavior of MaterialsProject (20110474) supported by Natural Science Basic Research Plan in Shaanxi Province of China
文摘Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reveal that high strength and low ductility are obtained in all semi-solid forged alloys. Tensile properties decrease as the semi-solid forging temperature increases, and cleavage fractures are observed after semi-solid forging at 1 050 °C. The variations in tensile properties are attributed to the coarse microstructures obtained in the semi-solid alloys. It is found that the elevated semi-solid temperatures lead to more liquid precipitates along the prior grain boundaries, which increases the peritectic precipitation and formation of Ti2Cu precipitation zones during re-solidification. Recrystallization heat treatment leads to fine microstructure of semi-solid forged alloys, resulting in improvement of tensile properties.