The main purpose of the paper is to display the relaxation oscillations, known as the bursting phenomena, for the coupled oscillators with periodic excitation with an order gap between the exciting frequency and the n...The main purpose of the paper is to display the relaxation oscillations, known as the bursting phenomena, for the coupled oscillators with periodic excitation with an order gap between the exciting frequency and the natural frequency. For the case when the exciting frequency is much smaller than the natural frequency, different types of bursting oscillations such as fold/fold, Hopf/Hopf bursting oscillations can be observed. By regarding the whole exciting term as a slow-varying parameter on the fact that the exciting term changes on a much smaller time scale, bifurcations sets of the generalized autonomous system is derived, which divide the parameter space into several regions associated with different types of dynamical behaviors. Two cases with typical bifurcation patterns are focused on as examples to explore the dynamical evolution with the variation of the amplitude of the external excitation. Bursting oscillations which alternate between quiescent states (QSs) and repetitive spiking states (SPs) can be obtained, the mechanism of which is presented by introducing the transformed phase portraits overlapping with the bifurcation diagrams of the generalized autonomous system. It is found that not only the forms of QSs and SPs, but also the bifurcations at the transition points between QSs and SPs, may influence the structures of bursting attractors. Furthermore, the amplitudes and the frequencies related to SPs may depend on the bifurcation patterns from the quiescent sates.展开更多
A recent study has found an explosive synchronization in a Kurammoto model on scale-free networks when the natural frequencies of oscillators are equal to their degrees. In this work, we introduce a quantity to charac...A recent study has found an explosive synchronization in a Kurammoto model on scale-free networks when the natural frequencies of oscillators are equal to their degrees. In this work, we introduce a quantity to characterize the correlation between the structural and the dynamical properties and investigate the impacts of the correlation on the synchronization transition in the Kuramoto model on scale-free networks. We find that the synchronization transition may be either a continuous one or a discontinuous one depending on the correlation and that strong correlation always postpones both the transitions from the incoherent state to a synchronous one and the transition from a synchronous state to the incoherent one. We find that the dependence of the synchronization transition on the correlation is also valid for other types of distributions of natural frequency.展开更多
Synchronization of Kuramoto phase oscillators arranged in real complex neural networks is investigated. It is shown that the synchronization greatly depends on the sets of natural frequencies of the involved oscillato...Synchronization of Kuramoto phase oscillators arranged in real complex neural networks is investigated. It is shown that the synchronization greatly depends on the sets of natural frequencies of the involved oscillators. The influence of network connectivity heterogeneity on synchronization depends particularly on the correlation between natural frequencies and node degrees. This finding implies a potential application that inhibiting the effects caused by the changes of network structure can be bManced out nicely by choosing the correlation parameter appropriately.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11272135, 21276115, 11472115 & 11472116)the Scientific Research Innovation Foundation of Jiangsu Province (Grant No.1291480004)
文摘The main purpose of the paper is to display the relaxation oscillations, known as the bursting phenomena, for the coupled oscillators with periodic excitation with an order gap between the exciting frequency and the natural frequency. For the case when the exciting frequency is much smaller than the natural frequency, different types of bursting oscillations such as fold/fold, Hopf/Hopf bursting oscillations can be observed. By regarding the whole exciting term as a slow-varying parameter on the fact that the exciting term changes on a much smaller time scale, bifurcations sets of the generalized autonomous system is derived, which divide the parameter space into several regions associated with different types of dynamical behaviors. Two cases with typical bifurcation patterns are focused on as examples to explore the dynamical evolution with the variation of the amplitude of the external excitation. Bursting oscillations which alternate between quiescent states (QSs) and repetitive spiking states (SPs) can be obtained, the mechanism of which is presented by introducing the transformed phase portraits overlapping with the bifurcation diagrams of the generalized autonomous system. It is found that not only the forms of QSs and SPs, but also the bifurcations at the transition points between QSs and SPs, may influence the structures of bursting attractors. Furthermore, the amplitudes and the frequencies related to SPs may depend on the bifurcation patterns from the quiescent sates.
基金Supported by National Natural Science Foundation of China under Grant No.71301012
文摘A recent study has found an explosive synchronization in a Kurammoto model on scale-free networks when the natural frequencies of oscillators are equal to their degrees. In this work, we introduce a quantity to characterize the correlation between the structural and the dynamical properties and investigate the impacts of the correlation on the synchronization transition in the Kuramoto model on scale-free networks. We find that the synchronization transition may be either a continuous one or a discontinuous one depending on the correlation and that strong correlation always postpones both the transitions from the incoherent state to a synchronous one and the transition from a synchronous state to the incoherent one. We find that the dependence of the synchronization transition on the correlation is also valid for other types of distributions of natural frequency.
基金Supports by the National Natural Science Foundation of China under Grant Nos.11105095,11074184,11204197,11005077,11205111the Natural Science Foundation of Higher Education Institutions of Jiangsu Province under Grant No.11KJB140008the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Synchronization of Kuramoto phase oscillators arranged in real complex neural networks is investigated. It is shown that the synchronization greatly depends on the sets of natural frequencies of the involved oscillators. The influence of network connectivity heterogeneity on synchronization depends particularly on the correlation between natural frequencies and node degrees. This finding implies a potential application that inhibiting the effects caused by the changes of network structure can be bManced out nicely by choosing the correlation parameter appropriately.