[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixat...[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.展开更多
In order to develop organic rice and increase paddy soil fertility by cloverorganic rice rotation, the effects of N, P and K fertilizers on growth of clover nitrogen-fixing rhizobia and soil fertility after plantation...In order to develop organic rice and increase paddy soil fertility by cloverorganic rice rotation, the effects of N, P and K fertilizers on growth of clover nitrogen-fixing rhizobia and soil fertility after plantation were investigated, thereby providing certain reference for reasonable cultivation of clover and improvement of soil fertility. A two-year experiment was conducted from 2012 to 2013. The clover was cultivated after rice every year, and different levels of N, P and K fertilizers were applied before winter. In the treatment group, no fertilizer was applied. The effects of different fertilizers and different application amounts on clover yield, nitrogen-fixing rhizobia quantity, nitrogen-fixing rhizobia weight and soil fertility after plantation were analyzed. The results showed that the application of N, P and K fertilizers in the early stage had significantly effect on the growth of clover. When the application amount of N fertilizer was 75 kg/hm^2(N 46%), the clover yield, nitrogen-fixing rhizobia quantity and nitrogen-fixing rhizobia weight were highest. The soil nitrogen content after plantation increased with the increase of the application amount of N fertilizer, while the P and K content decreased and then increased with the increased application amounts. Soil available P content increased with the increased application amounts of N and P fertilizers, but it did not change significantly with the increased application amount of K fertilizer. Soil available K content increased first and then decreased with the increased application amounts of N and P fertilizers.When the application amounts of N and P fertilizers were 150(N 46%) and 300(P_2O_5 12%) kg/hm^2, soil available K content reached the maximum. Soil organic matter content increased with the increased application amounts of N, P and K fertilizers. Therefore, in the cultivation of clover, appropriate application of N, P and K fertilizers in the early stage can improve clover yield and soil fertility.展开更多
In order to evaluate interstitial strengthening effect on the properties of high entropy alloy(HEA),a nitrogen-doped Cr Mn Fe VTi6 HEA was fabricated by mechanical alloying(MA)and spark plasma sintering(SPS).XRD,SEM,T...In order to evaluate interstitial strengthening effect on the properties of high entropy alloy(HEA),a nitrogen-doped Cr Mn Fe VTi6 HEA was fabricated by mechanical alloying(MA)and spark plasma sintering(SPS).XRD,SEM,TEM and FIB were used to characterize the phase composition and microstructure of this material.The sintered bulk HEA exhibits a microstructure comprising TiNx,BCC,Laves and B2 phases.The HEA exhibits high yield strength(>2729 MPa)and hardness in lower temperature range of<380℃.Quantitative calculations of the contributions from each strengthening mechanism in the BCC phase indicate that the interstitial strengthening by nitrogen is the dominant mechanism.Nitrogen additions in the BCC phase can produce a yield strength increase of-634 MPa/at.%,which is much higher than the strengthening effects of carbon or boron additions in other alloys.This demonstrates that adding nitrogen is a viable approach for enhancing the strength of HEAs.展开更多
Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain...Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain aerobic non symbiotic nitrogen-fixing bacteria from coffee rhizosphere. The application of those bacteria was expected to enhance coffee seedling growth. Sixty four aerobic nitrogen-fixing bacterial isolates were isolated from coffee plants rhizosphere from Jember, East Java using several nitrogen free medium, such as Ashby, malate acid, and fahreus agar. The nitrogen fixation ability of the isolates was determined by measuring their ability in pellicle formation on semi solid medium and ammonium excretion on growth medium. Ab Kws.l, Asm E6s.3.a, Asm Bsl.1, and Asm E6s were the isolates which showed the best performance on nitrogen fixation with excreted ammonium concentration ranged from 129.6 up to 239.8 pM/mg dry weight cell. Acetylene reduction assay was used to detect nitrogenase activity. Ab Kws.1 was the isolate which had the highest nitrogenase activity (7.4 mmol N2 fixed/gram dry weight cell/hour). Inoculation of the four best isolates onto Robusta coffee seedling positively enhanced the seedling growth in this green house experiment. Based on the results of Becton Dickinson's (BD) PhoenixTM Automated Microbiology System biochemical tests, Asm Bls.l isolates has similarities with Achromobacter sp., Asm E6s.l and Asm E6s.3.a had similarities with Stenotrophomonas maltophilia, while Ab Kws. 1 had similarities with Leifsonia aquatica.展开更多
The objective of this study was to determine the efficiency of biological nitrogen fixation (BNF) of local Bradyrhizobium isolates in soil of various fertility levels using 15N dilution technique. Local isolates wer...The objective of this study was to determine the efficiency of biological nitrogen fixation (BNF) of local Bradyrhizobium isolates in soil of various fertility levels using 15N dilution technique. Local isolates were obtained from cowpea rhizosphere in fields of different Iraqi provinces. Six isolates were selected in this study, which was conducted as a pot experiment under greenhouse conditions. Effects of the following fertility levels were evaluated: at F1, 0 mg N, P and K was added; at F2, 25 mg N/kg soil, 10 mg P/kg soil and 25 mg K/kg soil were added, respectively; the other two levels were F3 at which 50, 20 and 50 mg/kg soil and at F4 75, 30 and 75 mg/kg soil for N, P and K, respectively, were added. Urea, labeled with 15N 10% access atom (aa), was used as a source of N. The highest BNF was observed under the lowest fertility level, i.e., F1. BNF across all isolates was markedly decreased with the increase of nutrient application to soil, being totally eliminated at the highest fertility level F4. Numbers of nodules per plant root of all isolates were the least under the zero nutrients application and the highest nodules number were found under the highest levels of N, P and K application. Number of nodules does not necessarily reflect the best BNF efficiency of all isolates. However, fertility levels were of significant effect on average nodule number of all isolates. The lowest plant dry weight was under the first fertility level F1 irrelevant of Rhizobium isolates. In general, the highest plant dry weight was under the second soil fertility level F2.展开更多
基金National Natural Science Foundation of China (3026005430660085)+1 种基金Key Project of Guangxi Academy of Agricultural Sciences (2004002)Natural Science Foundation in Guangxi Zhuang Autonomous Region (0639011)~~
文摘[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.
基金Science&Technology Specific Project for Enriching People and Strengthening County Economy(BN2015221)~~
文摘In order to develop organic rice and increase paddy soil fertility by cloverorganic rice rotation, the effects of N, P and K fertilizers on growth of clover nitrogen-fixing rhizobia and soil fertility after plantation were investigated, thereby providing certain reference for reasonable cultivation of clover and improvement of soil fertility. A two-year experiment was conducted from 2012 to 2013. The clover was cultivated after rice every year, and different levels of N, P and K fertilizers were applied before winter. In the treatment group, no fertilizer was applied. The effects of different fertilizers and different application amounts on clover yield, nitrogen-fixing rhizobia quantity, nitrogen-fixing rhizobia weight and soil fertility after plantation were analyzed. The results showed that the application of N, P and K fertilizers in the early stage had significantly effect on the growth of clover. When the application amount of N fertilizer was 75 kg/hm^2(N 46%), the clover yield, nitrogen-fixing rhizobia quantity and nitrogen-fixing rhizobia weight were highest. The soil nitrogen content after plantation increased with the increase of the application amount of N fertilizer, while the P and K content decreased and then increased with the increased application amounts. Soil available P content increased with the increased application amounts of N and P fertilizers, but it did not change significantly with the increased application amount of K fertilizer. Soil available K content increased first and then decreased with the increased application amounts of N and P fertilizers.When the application amounts of N and P fertilizers were 150(N 46%) and 300(P_2O_5 12%) kg/hm^2, soil available K content reached the maximum. Soil organic matter content increased with the increased application amounts of N, P and K fertilizers. Therefore, in the cultivation of clover, appropriate application of N, P and K fertilizers in the early stage can improve clover yield and soil fertility.
文摘In order to evaluate interstitial strengthening effect on the properties of high entropy alloy(HEA),a nitrogen-doped Cr Mn Fe VTi6 HEA was fabricated by mechanical alloying(MA)and spark plasma sintering(SPS).XRD,SEM,TEM and FIB were used to characterize the phase composition and microstructure of this material.The sintered bulk HEA exhibits a microstructure comprising TiNx,BCC,Laves and B2 phases.The HEA exhibits high yield strength(>2729 MPa)and hardness in lower temperature range of<380℃.Quantitative calculations of the contributions from each strengthening mechanism in the BCC phase indicate that the interstitial strengthening by nitrogen is the dominant mechanism.Nitrogen additions in the BCC phase can produce a yield strength increase of-634 MPa/at.%,which is much higher than the strengthening effects of carbon or boron additions in other alloys.This demonstrates that adding nitrogen is a viable approach for enhancing the strength of HEAs.
文摘Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain aerobic non symbiotic nitrogen-fixing bacteria from coffee rhizosphere. The application of those bacteria was expected to enhance coffee seedling growth. Sixty four aerobic nitrogen-fixing bacterial isolates were isolated from coffee plants rhizosphere from Jember, East Java using several nitrogen free medium, such as Ashby, malate acid, and fahreus agar. The nitrogen fixation ability of the isolates was determined by measuring their ability in pellicle formation on semi solid medium and ammonium excretion on growth medium. Ab Kws.l, Asm E6s.3.a, Asm Bsl.1, and Asm E6s were the isolates which showed the best performance on nitrogen fixation with excreted ammonium concentration ranged from 129.6 up to 239.8 pM/mg dry weight cell. Acetylene reduction assay was used to detect nitrogenase activity. Ab Kws.1 was the isolate which had the highest nitrogenase activity (7.4 mmol N2 fixed/gram dry weight cell/hour). Inoculation of the four best isolates onto Robusta coffee seedling positively enhanced the seedling growth in this green house experiment. Based on the results of Becton Dickinson's (BD) PhoenixTM Automated Microbiology System biochemical tests, Asm Bls.l isolates has similarities with Achromobacter sp., Asm E6s.l and Asm E6s.3.a had similarities with Stenotrophomonas maltophilia, while Ab Kws. 1 had similarities with Leifsonia aquatica.
文摘The objective of this study was to determine the efficiency of biological nitrogen fixation (BNF) of local Bradyrhizobium isolates in soil of various fertility levels using 15N dilution technique. Local isolates were obtained from cowpea rhizosphere in fields of different Iraqi provinces. Six isolates were selected in this study, which was conducted as a pot experiment under greenhouse conditions. Effects of the following fertility levels were evaluated: at F1, 0 mg N, P and K was added; at F2, 25 mg N/kg soil, 10 mg P/kg soil and 25 mg K/kg soil were added, respectively; the other two levels were F3 at which 50, 20 and 50 mg/kg soil and at F4 75, 30 and 75 mg/kg soil for N, P and K, respectively, were added. Urea, labeled with 15N 10% access atom (aa), was used as a source of N. The highest BNF was observed under the lowest fertility level, i.e., F1. BNF across all isolates was markedly decreased with the increase of nutrient application to soil, being totally eliminated at the highest fertility level F4. Numbers of nodules per plant root of all isolates were the least under the zero nutrients application and the highest nodules number were found under the highest levels of N, P and K application. Number of nodules does not necessarily reflect the best BNF efficiency of all isolates. However, fertility levels were of significant effect on average nodule number of all isolates. The lowest plant dry weight was under the first fertility level F1 irrelevant of Rhizobium isolates. In general, the highest plant dry weight was under the second soil fertility level F2.