Pure water has been characterized for nearly a century, by its dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. As a chemical equilibrium reaction, the equilibrium constant, known as the ion product...Pure water has been characterized for nearly a century, by its dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. As a chemical equilibrium reaction, the equilibrium constant, known as the ion product or the product of the equilibrium concentration of the two ion species, has been extensively measured by chemists over the liquid water temperature and pressure range. The experimental data have been nonlinear least-squares fitted to chemical thermodynamic-based equilibrium equations, which have been accepted as the industrial standard for 35 years. In this study, a new and statistical-physics-based water ion product equation is presented, in which, the ions are the positively charged protons and the negatively charged proton-holes or prohols. Nonlinear least squares fits of our equation to the experimental data in the 0-100℃ pure liquid water range, give a factor of two better precision than the 35-year industrial standard.展开更多
A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu ...A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu joints with different process parameters (bonding temperature and preheating time) were investigated. The results showed that intermetallics formed at the interface and the thickness and variety increased with the increase of bonding temperature and preheating time. The Ni?P interlayer functioned as a diffusion barrier and protective film which effectively reduced the formation of intermetallics. The shear strength and conductivity of Al/Cu bimetal were reduced by increasing the thickness of intermetallics. In particular, the detrimental effect of Al2Cu phase was more obvious compared with the others. The sample preheated at 780 ℃ for 150 s exhibited the maximum shear strength and conductivity of 49.8 MPa and 5.29×10^5 S/cm, respectively.展开更多
The solid-liquid equilibrium of benzoic acid derivatives in 1-octanol was first determined in this article. Using a laser monitoring observation technique, the solubility data of o-amino-benzoic acid, p-amino-benzoic ...The solid-liquid equilibrium of benzoic acid derivatives in 1-octanol was first determined in this article. Using a laser monitoring observation technique, the solubility data of o-amino-benzoic acid, p-amino-benzoic acid,o-chloro-benzoic acid, and m-nitro-benzoic acid in 1-octanol were measured by the polythermal method in the temperature range of 20-50℃. The experimental data were regressed with the. Wilson equation and the λH equation. The experimental results showed that the solubility of the four chemicals in 1-octanol increased significantly with temperature. The results indicate that the molecular structure and interactions affect the solubility significantly.The solubility order of the benzoic acid derivatives is as follows: m-nitro-benzoic acid〉o-chloro-benzoic acid〉 o-amino-benzoic acid〉p-amino-benzoic acid. Both the Wilson equation and λH equation are in good agreement with the experimental data.展开更多
Room temperature and high temperature microstructural and mechanical properties of arc melted Ni Al-28Cr-6Mo eutectic alloys doped with 0.1% Fe, 0.2% Fe and 0.5% Fe(mole fraction) were investigated. The homogenization...Room temperature and high temperature microstructural and mechanical properties of arc melted Ni Al-28Cr-6Mo eutectic alloys doped with 0.1% Fe, 0.2% Fe and 0.5% Fe(mole fraction) were investigated. The homogenization heat treatment of the alloys was conducted at 1300℃ in Ar atmosphere. Microscopic analyses, hardness measurements, XRD measurements and compression tests were used to characterize the alloys. As-cast and homogenized alloys exhibit fine cellular eutectic structures with coarse intercellular eutectic structure. The increase in the content of Fe results in coarsening eutectic layers and the decrease in eutectic cells. All alloys have very high compressive stress and strain at room temperature. The addition of Fe has small negative impact on the strength and ductility of the alloys at room temperature. However, the addition of Fe increases the high temperature strength of the alloy. High temperature XRD patterns show that peaks shift to lower Bragg angles. This indicates that the lattice parameter of the alloys increases.展开更多
It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liq...It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.展开更多
The carbothermic reduction of Panzhihua ilmenite with various additions of activated carbon was investigated byisothermal experiments over the temperature range of1373to1773K in the argon atmosphere.According to the r...The carbothermic reduction of Panzhihua ilmenite with various additions of activated carbon was investigated byisothermal experiments over the temperature range of1373to1773K in the argon atmosphere.According to the reaction kineticsrecorded by the infrared gas analyzer,it was found that the amount of carbon addition had little influence on the reaction rates atvarious temperatures except1473K.When the reaction temperature was above the eutectic temperature of1427K of Fe?C binarysystem,part of carbon would dissolve into Fe to form a liquid phase,which made the liquid Fe as a diffusion channel of carbon todiffuse to the reaction interface.The carbothermic reduction above1573K obeyed the shrinking-core model.The mass fraction ofTiC could be determined by the standard addition technique.展开更多
AIM: To assess the hypercoagulability in PBC and its relationship with homocysteine (HCY) and various components of the haemostatic system. METHODS: We investigated 51 PBC patients (43F/8M; mean age: 63±13....AIM: To assess the hypercoagulability in PBC and its relationship with homocysteine (HCY) and various components of the haemostatic system. METHODS: We investigated 51 PBC patients (43F/8M; mean age: 63±13.9 yr) and 102 healthy subjects (86 women/16 men, 63±13 yr), and evaluated the haemostatic process in whole blood by the Sonoclot analysis and the platelet function by PFA-100 device. We then measured HCY (fasting and after methionine loading), tissue factor (TF), thrombin-antithrombin complexes (TAT), D-dimer (D-D), thrombomodulin (TH), folic acid, vitamin B6 and B12 plasma levels. C677T 5,10-methylenetetrahydrofolate reductase (HTHFR) polymorphism was analyzed. RESULTS: Sonoclot RATE values of patients were significantly (P〈 0.001) higher than those of controls. Sonoclot time to peak values and PFA-100 closure times were comparable in patients and controls. TAT, TF and HCY levels, both in the fasting and post-methionine loading, were significantly (P〈0.001) higher in patients than in controls. Vitamin deficiencies were detected in 45/51 patients (88.2%). The prevalence of the homozygous TT677 MTHFR genotype was significantly higher in patients (31.4%) than in controls (17.5%) (P〈 0.05). Sonodot RATE values correlated significantly with HCY levels and TF.CONCLUSION: In PBC, hyper-HCY is related to hypovitaminosis and genetic predisposing factors. Increased TF and HCY levels and signs of endothelial activation areassociated with hypercoagulability and may have an important role in blood clotting activation.展开更多
Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperatu...Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperature and humidity cycling test, soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S) grout. Density, surface hardness, water penetration capacity, water permeability capacity, soluble salt, scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) spectrum of these samples have been tested after accelerated ageing tests. The results show that densities of samples decrease, surface hardness, water penetration capacity and water permeability capacity of samples increase generally. Besides, soluble salt analysis, SEM and EDS results well corroborate the changes. Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test, followed by water stability, soundness and alkali resistance test in sequence. But in general, CGN-(F+S) still has good durability.展开更多
Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol...Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.展开更多
Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively....Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.展开更多
Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The micro...Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The microstructures of initial and semi-solid treated samples were compared and analyzed.The results showed a significant difference in the liquid phase distribution between three-pass ECAP processed(3P)and as-received samples during the isothermal heating process.The semi-solid 3P sample showed a more uniform liquid distribution due to its smaller dihedral angle.Besides,the coarsening processes of solid grains of as-received and 3P samples were dominated by the coalescence and Ostwald ripening mechanism,respectively.The difference of coarsening processes was mainly related to the proportion of the high-angle grain boundaries in materials,which further affected the evolution behavior of the liquid pools.展开更多
To establish a theoretical foundation for simultaneous removal of multi-heavy metals,the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from their single and binary systems by Ca-alginate immobilized activated carbon and Sa...To establish a theoretical foundation for simultaneous removal of multi-heavy metals,the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from their single and binary systems by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae (CAS) was investigated.The CAS beads were characterized by Scanning electron microscope (SEM) and Fourier transformed infrared spectroscopy (FTTR).The effect of initial pH,adsorbent dosage,contact time and initial metal ions concentration on the adsorption process was systematically investigated.The experimental maximum contents of Cu(Ⅱ) and Pb(Ⅱ) uptake capacity were determined as 64.90 and 166.31 mg/g,respectively.The pseudo-second-order rate equation and Langmuir isotherm model could explain respectively the kinetic and isotherm experimental data of Cu(Ⅱ) and Pb(Ⅱ) ions in single-component systems with much satisfaction.The experimental adsorption data of Cu(Ⅱ) and Pb(Ⅱ) ions in binary system were best described by the extended Freundlich isotherm and the extended Langmuir isotherm,respectively.The removal of Cu(lⅡ) ions was more significantly influenced by the presence of the coexistent Pb(Ⅱ) species,while the Pb(Ⅱ) removal was affected slightly by varying the initial concentration of Cu(Ⅱ).The CAS was successfully regenerated using 1 mol/L HNO3 solution.展开更多
The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSC...The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSCFB).Liquid viscosity promotes the axial liquid backmixing when solid particles and gas bubbles are present. Increases in gas velocities and solid circulating rates lead to higher Dax. The effects of liquid velocity on Dax are associated with liquid viscosity. Compared with conventional expanded beds, the GLSCFBs hold less axial liquid dispersion,approaching ideal plug-flow reactors.展开更多
Solubilities were measured for succinic acid dissolved in cyclohexanone, cyclohexanol and 5 of their mixed solvents at the temperature range from 291. 85 K to 358.37 K using a dynamic method. The solubility data were ...Solubilities were measured for succinic acid dissolved in cyclohexanone, cyclohexanol and 5 of their mixed solvents at the temperature range from 291. 85 K to 358.37 K using a dynamic method. The solubility data were regressed by λh equation, with,the average absolute relative deviation 3.47%. The binary interaction parameter is 0.306 7 for the mixed solvent of oyolohexanone and cyclohexanol was determined by correlating the experimental solubilities with the modified λh equation. When the binary interaction parameter was determined it can be used to extrapolate the solubilities of succinic acid in mixed solvents of cyclohexanone and cyclohexanol at any proportion.The average absolute relative deviation was 7. 69% by using the modified λh equation to correlate the solubility data, however, the average absolute relative deviation was 8.89% by using NRTL equation to correlate the solubility data. The results show that the accuracy of the modified λh equation is better than that of the NRTL equation for the solubility of succinic acid in the 5 mixed solvents of cyclohexanone and cyclohexanol.展开更多
文摘Pure water has been characterized for nearly a century, by its dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. As a chemical equilibrium reaction, the equilibrium constant, known as the ion product or the product of the equilibrium concentration of the two ion species, has been extensively measured by chemists over the liquid water temperature and pressure range. The experimental data have been nonlinear least-squares fitted to chemical thermodynamic-based equilibrium equations, which have been accepted as the industrial standard for 35 years. In this study, a new and statistical-physics-based water ion product equation is presented, in which, the ions are the positively charged protons and the negatively charged proton-holes or prohols. Nonlinear least squares fits of our equation to the experimental data in the 0-100℃ pure liquid water range, give a factor of two better precision than the 35-year industrial standard.
基金Project(51571080)supported by the National Natural Science Foundation of China
文摘A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu joints with different process parameters (bonding temperature and preheating time) were investigated. The results showed that intermetallics formed at the interface and the thickness and variety increased with the increase of bonding temperature and preheating time. The Ni?P interlayer functioned as a diffusion barrier and protective film which effectively reduced the formation of intermetallics. The shear strength and conductivity of Al/Cu bimetal were reduced by increasing the thickness of intermetallics. In particular, the detrimental effect of Al2Cu phase was more obvious compared with the others. The sample preheated at 780 ℃ for 150 s exhibited the maximum shear strength and conductivity of 49.8 MPa and 5.29×10^5 S/cm, respectively.
基金Supported by the National Natural Science Foundation of China (No.20676101) and the Natural Science Foundation of Tianjin University of Science & Technology (No.20050207).
文摘The solid-liquid equilibrium of benzoic acid derivatives in 1-octanol was first determined in this article. Using a laser monitoring observation technique, the solubility data of o-amino-benzoic acid, p-amino-benzoic acid,o-chloro-benzoic acid, and m-nitro-benzoic acid in 1-octanol were measured by the polythermal method in the temperature range of 20-50℃. The experimental data were regressed with the. Wilson equation and the λH equation. The experimental results showed that the solubility of the four chemicals in 1-octanol increased significantly with temperature. The results indicate that the molecular structure and interactions affect the solubility significantly.The solubility order of the benzoic acid derivatives is as follows: m-nitro-benzoic acid〉o-chloro-benzoic acid〉 o-amino-benzoic acid〉p-amino-benzoic acid. Both the Wilson equation and λH equation are in good agreement with the experimental data.
基金Tubitak for their financial support under Contract No. 213M247
文摘Room temperature and high temperature microstructural and mechanical properties of arc melted Ni Al-28Cr-6Mo eutectic alloys doped with 0.1% Fe, 0.2% Fe and 0.5% Fe(mole fraction) were investigated. The homogenization heat treatment of the alloys was conducted at 1300℃ in Ar atmosphere. Microscopic analyses, hardness measurements, XRD measurements and compression tests were used to characterize the alloys. As-cast and homogenized alloys exhibit fine cellular eutectic structures with coarse intercellular eutectic structure. The increase in the content of Fe results in coarsening eutectic layers and the decrease in eutectic cells. All alloys have very high compressive stress and strain at room temperature. The addition of Fe has small negative impact on the strength and ductility of the alloys at room temperature. However, the addition of Fe increases the high temperature strength of the alloy. High temperature XRD patterns show that peaks shift to lower Bragg angles. This indicates that the lattice parameter of the alloys increases.
基金Supported by the National Natural Science Foundation of China(No.29576251)
文摘It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.
基金Project(FRF-TP-15-009A3) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1460201) supported by the National Natural Science Foundation of China
文摘The carbothermic reduction of Panzhihua ilmenite with various additions of activated carbon was investigated byisothermal experiments over the temperature range of1373to1773K in the argon atmosphere.According to the reaction kineticsrecorded by the infrared gas analyzer,it was found that the amount of carbon addition had little influence on the reaction rates atvarious temperatures except1473K.When the reaction temperature was above the eutectic temperature of1427K of Fe?C binarysystem,part of carbon would dissolve into Fe to form a liquid phase,which made the liquid Fe as a diffusion channel of carbon todiffuse to the reaction interface.The carbothermic reduction above1573K obeyed the shrinking-core model.The mass fraction ofTiC could be determined by the standard addition technique.
文摘AIM: To assess the hypercoagulability in PBC and its relationship with homocysteine (HCY) and various components of the haemostatic system. METHODS: We investigated 51 PBC patients (43F/8M; mean age: 63±13.9 yr) and 102 healthy subjects (86 women/16 men, 63±13 yr), and evaluated the haemostatic process in whole blood by the Sonoclot analysis and the platelet function by PFA-100 device. We then measured HCY (fasting and after methionine loading), tissue factor (TF), thrombin-antithrombin complexes (TAT), D-dimer (D-D), thrombomodulin (TH), folic acid, vitamin B6 and B12 plasma levels. C677T 5,10-methylenetetrahydrofolate reductase (HTHFR) polymorphism was analyzed. RESULTS: Sonoclot RATE values of patients were significantly (P〈 0.001) higher than those of controls. Sonoclot time to peak values and PFA-100 closure times were comparable in patients and controls. TAT, TF and HCY levels, both in the fasting and post-methionine loading, were significantly (P〈0.001) higher in patients than in controls. Vitamin deficiencies were detected in 45/51 patients (88.2%). The prevalence of the homozygous TT677 MTHFR genotype was significantly higher in patients (31.4%) than in controls (17.5%) (P〈 0.05). Sonodot RATE values correlated significantly with HCY levels and TF.CONCLUSION: In PBC, hyper-HCY is related to hypovitaminosis and genetic predisposing factors. Increased TF and HCY levels and signs of endothelial activation areassociated with hypercoagulability and may have an important role in blood clotting activation.
基金Project(51578272)supported by the National Natural Science Foundation of China
文摘Calcined ginger nuts admixed by fly ash and quartz sand (CGN-(F+S)) has been validated to be basically compatible to earthen sites as an anchor grout. Accelerated ageing tests including water stability test, temperature and humidity cycling test, soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S) grout. Density, surface hardness, water penetration capacity, water permeability capacity, soluble salt, scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) spectrum of these samples have been tested after accelerated ageing tests. The results show that densities of samples decrease, surface hardness, water penetration capacity and water permeability capacity of samples increase generally. Besides, soluble salt analysis, SEM and EDS results well corroborate the changes. Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test, followed by water stability, soundness and alkali resistance test in sequence. But in general, CGN-(F+S) still has good durability.
文摘Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.
基金Supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP)GTL Technology Development Consortium (Korean National Oil Corp., Korea Gas Corp., Daelim Industrial Co. and Hyundai Engineering Co.) under "Energy Efficiency & Resources Programs" of the Ministry of Knowledge Economy, Republic of Korea
文摘Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.
基金supported by Key Development Project of Sichuan Province(Grant No.2017GZ0399)。
文摘Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The microstructures of initial and semi-solid treated samples were compared and analyzed.The results showed a significant difference in the liquid phase distribution between three-pass ECAP processed(3P)and as-received samples during the isothermal heating process.The semi-solid 3P sample showed a more uniform liquid distribution due to its smaller dihedral angle.Besides,the coarsening processes of solid grains of as-received and 3P samples were dominated by the coalescence and Ostwald ripening mechanism,respectively.The difference of coarsening processes was mainly related to the proportion of the high-angle grain boundaries in materials,which further affected the evolution behavior of the liquid pools.
基金Project(11JJ2031)supported by the Key Project of Natural Science Foundation of Hunan Province,China
文摘To establish a theoretical foundation for simultaneous removal of multi-heavy metals,the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from their single and binary systems by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae (CAS) was investigated.The CAS beads were characterized by Scanning electron microscope (SEM) and Fourier transformed infrared spectroscopy (FTTR).The effect of initial pH,adsorbent dosage,contact time and initial metal ions concentration on the adsorption process was systematically investigated.The experimental maximum contents of Cu(Ⅱ) and Pb(Ⅱ) uptake capacity were determined as 64.90 and 166.31 mg/g,respectively.The pseudo-second-order rate equation and Langmuir isotherm model could explain respectively the kinetic and isotherm experimental data of Cu(Ⅱ) and Pb(Ⅱ) ions in single-component systems with much satisfaction.The experimental adsorption data of Cu(Ⅱ) and Pb(Ⅱ) ions in binary system were best described by the extended Freundlich isotherm and the extended Langmuir isotherm,respectively.The removal of Cu(lⅡ) ions was more significantly influenced by the presence of the coexistent Pb(Ⅱ) species,while the Pb(Ⅱ) removal was affected slightly by varying the initial concentration of Cu(Ⅱ).The CAS was successfully regenerated using 1 mol/L HNO3 solution.
文摘The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSCFB).Liquid viscosity promotes the axial liquid backmixing when solid particles and gas bubbles are present. Increases in gas velocities and solid circulating rates lead to higher Dax. The effects of liquid velocity on Dax are associated with liquid viscosity. Compared with conventional expanded beds, the GLSCFBs hold less axial liquid dispersion,approaching ideal plug-flow reactors.
文摘Solubilities were measured for succinic acid dissolved in cyclohexanone, cyclohexanol and 5 of their mixed solvents at the temperature range from 291. 85 K to 358.37 K using a dynamic method. The solubility data were regressed by λh equation, with,the average absolute relative deviation 3.47%. The binary interaction parameter is 0.306 7 for the mixed solvent of oyolohexanone and cyclohexanol was determined by correlating the experimental solubilities with the modified λh equation. When the binary interaction parameter was determined it can be used to extrapolate the solubilities of succinic acid in mixed solvents of cyclohexanone and cyclohexanol at any proportion.The average absolute relative deviation was 7. 69% by using the modified λh equation to correlate the solubility data, however, the average absolute relative deviation was 8.89% by using NRTL equation to correlate the solubility data. The results show that the accuracy of the modified λh equation is better than that of the NRTL equation for the solubility of succinic acid in the 5 mixed solvents of cyclohexanone and cyclohexanol.