The solubilities of the quinary system Na^+ ,K^+ ,Mg^2+ //Cl ,NO 3 ^-H2O and its two quaternary subsystems, Na^+ ,K^+ ,Mg^2+ //NO 3 -H2O and K^ + ,Mg ^2+ //Cl ,NO 3 ^-H2O,were studied by isothermal method at 2...The solubilities of the quinary system Na^+ ,K^+ ,Mg^2+ //Cl ,NO 3 ^-H2O and its two quaternary subsystems, Na^+ ,K^+ ,Mg^2+ //NO 3 -H2O and K^ + ,Mg ^2+ //Cl ,NO 3 ^-H2O,were studied by isothermal method at 25°C and their phase diagrams were plotted.In the equilibrium phase diagram of quaternary system Na^ + ,K^ + ,Mg ^2+ //NO 3 ^-H2O, there are one invariant point,three univariant curves and three regions of crystallization with one salt:NaNO3, KNO3 and Mg(NO3)2·6H2O.In the equilibrium phase diagram of quaternary system K ^+ ,Mg ^2+ //Cl ,NO 3 ^-H2O,there are three invariant points,seven univariant curves and five regions of crystallization with one salt:KNO3,KCl, Mg(NO3)2·6H2O,MgCl2·6H2O and KCl·MgCl2·6H2O.In the equilibrium phase diagram of the quinary system Na ^+ , K^ + ,Mg ^2+ //Cl ,NO 3^ -H2O,there are four invariant points,and seven regions of crystallization with one salt:NaCl, KCl,NaNO3,KCl·MgCl2·6H2O,KNO3,MgCl2·6H2O and Mg(NO3)2·6H2O.展开更多
Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278....Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278.85 K and 284.45 K were measured at atmospheric pressure.The ternary phase diagrams of the systems were constructed on the base of the measured solubility.Two pure solid phases were formed at given temperatures,including pure L-arabinose and pure D-xylose,which were con firmed and determined by the method of Schreinemakers' wet residue.At the same temperature,the crystallization region of L-arabinose was larger than D-xylose's.The acquired solubility data were then correlated using the NRTL model,Wilson model and Xu model.The calculated solubility with the three models agreed well with the experimental values.展开更多
基金Supported by the National Natural Science Foundation of China(20466003 20866008)
文摘The solubilities of the quinary system Na^+ ,K^+ ,Mg^2+ //Cl ,NO 3 ^-H2O and its two quaternary subsystems, Na^+ ,K^+ ,Mg^2+ //NO 3 -H2O and K^ + ,Mg ^2+ //Cl ,NO 3 ^-H2O,were studied by isothermal method at 25°C and their phase diagrams were plotted.In the equilibrium phase diagram of quaternary system Na^ + ,K^ + ,Mg ^2+ //NO 3 ^-H2O, there are one invariant point,three univariant curves and three regions of crystallization with one salt:NaNO3, KNO3 and Mg(NO3)2·6H2O.In the equilibrium phase diagram of quaternary system K ^+ ,Mg ^2+ //Cl ,NO 3 ^-H2O,there are three invariant points,seven univariant curves and five regions of crystallization with one salt:KNO3,KCl, Mg(NO3)2·6H2O,MgCl2·6H2O and KCl·MgCl2·6H2O.In the equilibrium phase diagram of the quinary system Na ^+ , K^ + ,Mg ^2+ //Cl ,NO 3^ -H2O,there are four invariant points,and seven regions of crystallization with one salt:NaCl, KCl,NaNO3,KCl·MgCl2·6H2O,KNO3,MgCl2·6H2O and Mg(NO3)2·6H2O.
基金Supported by the National Natural Science Foundation of China(21376231)
文摘Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278.85 K and 284.45 K were measured at atmospheric pressure.The ternary phase diagrams of the systems were constructed on the base of the measured solubility.Two pure solid phases were formed at given temperatures,including pure L-arabinose and pure D-xylose,which were con firmed and determined by the method of Schreinemakers' wet residue.At the same temperature,the crystallization region of L-arabinose was larger than D-xylose's.The acquired solubility data were then correlated using the NRTL model,Wilson model and Xu model.The calculated solubility with the three models agreed well with the experimental values.