Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metasta...Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metastable liquid phase separation. At lower undercoolings,α-Fe phase was the primary phase and the solidification microstructure appeared as homogeneous well-defined dendrites. When the undercooling exceeded 24 K, the sample segregated into Fe-rich and Cu-rich zones. In the Fe-rich zone, FeSi intermetallic compound was the primary phase within the undercooling regime below 230 K, while Fe5Si3intermetallic compound replaced FeSi phase as the primary phase at larger undercoolings. The growth velocity of FeSi phase increased whereas that ofFe5Si3 phase decreased with increasing undercooling. For the Cu-rich zone, FeSi intermetallic compound was always the primary phase. Energy-dispersive spectrometry analyses showed that the average compositions of separated zones have deviated substantially from the original alloycomposition.展开更多
An Al-5.3%Zn-5.3%Mg alloy was unidirectionally solidified to determine morphological transition and solute distribution by a modification of the Bridgman technique for crystal growth with growth rates ranging from 4-5...An Al-5.3%Zn-5.3%Mg alloy was unidirectionally solidified to determine morphological transition and solute distribution by a modification of the Bridgman technique for crystal growth with growth rates ranging from 4-500 μm/s and a temperature gradient of 25 K/cm. It was determined that growth rates from 6.5-9.5 μm/s generated a cell morphology, where the lower limit corresponds to the plane front to cellular transition and the upper limit indicates the cellular to columnar dendrite transition. The microstructures of the alloys solidified from 30 μm/s to growth rates less than 500 μm/s were mainly composed of columnar dendrites, while the microstructures solidified at growth rates greater than 500 μm/s were equiaxed. Regarding experimental results on solute distribution, a prediction of the model developed by Rappaz and Boettinger for dendrite solidification of multicomponent alloys was applied with excellent agreement. Results of solute distribution were employed to derive the precipitation fraction of τ-phase needed to increase the electrochemical properties of the alloy to be used as an Al-sacrificial anode.展开更多
基金Projects(51271150,51327901,51371150)supported by the National Natural Science Foundation of China
文摘Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metastable liquid phase separation. At lower undercoolings,α-Fe phase was the primary phase and the solidification microstructure appeared as homogeneous well-defined dendrites. When the undercooling exceeded 24 K, the sample segregated into Fe-rich and Cu-rich zones. In the Fe-rich zone, FeSi intermetallic compound was the primary phase within the undercooling regime below 230 K, while Fe5Si3intermetallic compound replaced FeSi phase as the primary phase at larger undercoolings. The growth velocity of FeSi phase increased whereas that ofFe5Si3 phase decreased with increasing undercooling. For the Cu-rich zone, FeSi intermetallic compound was always the primary phase. Energy-dispersive spectrometry analyses showed that the average compositions of separated zones have deviated substantially from the original alloycomposition.
基金the financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT) Project N° 129780PAPIIT-UNAM project N° IN213912-3
文摘An Al-5.3%Zn-5.3%Mg alloy was unidirectionally solidified to determine morphological transition and solute distribution by a modification of the Bridgman technique for crystal growth with growth rates ranging from 4-500 μm/s and a temperature gradient of 25 K/cm. It was determined that growth rates from 6.5-9.5 μm/s generated a cell morphology, where the lower limit corresponds to the plane front to cellular transition and the upper limit indicates the cellular to columnar dendrite transition. The microstructures of the alloys solidified from 30 μm/s to growth rates less than 500 μm/s were mainly composed of columnar dendrites, while the microstructures solidified at growth rates greater than 500 μm/s were equiaxed. Regarding experimental results on solute distribution, a prediction of the model developed by Rappaz and Boettinger for dendrite solidification of multicomponent alloys was applied with excellent agreement. Results of solute distribution were employed to derive the precipitation fraction of τ-phase needed to increase the electrochemical properties of the alloy to be used as an Al-sacrificial anode.