AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments o...AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments on the microstructure and mechanical properties of the AM50-4%(Zn,Y)alloy were investigated using OM,XRD,SEM/EDS,TEM,tensile test and hardness test.The experimental results demonstrated that the two-step progressive solution treatment could make theΦandβphases sufficiently dissolve into the matrix which possessed higher supersaturated degree of the dissolved solute compared with the one-step solution treatment.This resulted in a certain enhancement of the precipitation strengthening effect during the subsequent aging process.The precipitation of theФphase had a greater impact on the comprehensive mechanical properties of the alloy thanβphase precipitation when the aging treatment was performed at180℃.The peak aging strength of the AM50-4%(Zn,Y)alloy which was subjected to the two-step progressive solution treatment process(345℃for16h and375℃for6h)was obtained after the aging treatment at180℃for12h.展开更多
Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test,...Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test, differential scanning calorimetric (DSC), energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transition electron microscopy (TEM), respectively The results show that both tensile strength and hardness increase first and then decrease with temperature at constant holding time of 30 min with maximum strength and hardness appearing at 520 ℃. Tensile strength, hardness and elongation of samples treated at 520 ℃ for 30 min are 566 MPa (σb), 512 MPa (σ0.2), HB 148 and 8.23% (δ), respectively. There are certain amount of fine T1 (AI2CuLi) phase dispersing among AI substrates according to TEM images. This may result in mixed fracture morphology with trans-granular and inter-granular delamination cracks observed in SEM images.展开更多
基金Project (201602548) supported by Liaoning Province Natural Science Foundation,ChinaProject (1711800) supported by Shenyang Science and Technology Plan,China+1 种基金Project (LQGD2017032) supported by Youth Project of Liaoning Education Department,ChinaProjects (51504153,51571145) supported by the National Natural Science Foundation of China
文摘AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments on the microstructure and mechanical properties of the AM50-4%(Zn,Y)alloy were investigated using OM,XRD,SEM/EDS,TEM,tensile test and hardness test.The experimental results demonstrated that the two-step progressive solution treatment could make theΦandβphases sufficiently dissolve into the matrix which possessed higher supersaturated degree of the dissolved solute compared with the one-step solution treatment.This resulted in a certain enhancement of the precipitation strengthening effect during the subsequent aging process.The precipitation of theФphase had a greater impact on the comprehensive mechanical properties of the alloy thanβphase precipitation when the aging treatment was performed at180℃.The peak aging strength of the AM50-4%(Zn,Y)alloy which was subjected to the two-step progressive solution treatment process(345℃for16h and375℃for6h)was obtained after the aging treatment at180℃for12h.
基金Foundation item: Project(6140506) supported by GAD (General Armament Department), China
文摘Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test, differential scanning calorimetric (DSC), energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transition electron microscopy (TEM), respectively The results show that both tensile strength and hardness increase first and then decrease with temperature at constant holding time of 30 min with maximum strength and hardness appearing at 520 ℃. Tensile strength, hardness and elongation of samples treated at 520 ℃ for 30 min are 566 MPa (σb), 512 MPa (σ0.2), HB 148 and 8.23% (δ), respectively. There are certain amount of fine T1 (AI2CuLi) phase dispersing among AI substrates according to TEM images. This may result in mixed fracture morphology with trans-granular and inter-granular delamination cracks observed in SEM images.