By using ion-exchange preparative chromatography (IEPC) and reversed-phase high performance liquid preparative chromatography(RP-HPLPC), thymosin α 1 was isolated and purified from the crude product synthesized by th...By using ion-exchange preparative chromatography (IEPC) and reversed-phase high performance liquid preparative chromatography(RP-HPLPC), thymosin α 1 was isolated and purified from the crude product synthesized by the solid-phase peptide synthesis(SPPS) method. The purity of the final product reached 95% through ion-exchange chromatography on DEAE Sepharose Fast Flow chromatography and Delta-Pak TM C18 purification after optimizing the chromatographic conditions. The capacity of purification process was 50mg/circle. The total yield was 36%. The technology is simple and reliable, and can be scaled up easily.展开更多
应用芴甲氧羰基(Fm o c)固相化学合成了海南捕鸟蛛毒素-Ⅲ,并优化了其最佳氧化复性条件。最佳的氧化复性条件为pH7.5的重蒸水溶液体系,样品质量浓度为0.1g/L,还原型谷胱甘肽和氧化型谷胱甘肽的浓度分别为1.0mm o l/L和0.1mm o l/L、L-A...应用芴甲氧羰基(Fm o c)固相化学合成了海南捕鸟蛛毒素-Ⅲ,并优化了其最佳氧化复性条件。最佳的氧化复性条件为pH7.5的重蒸水溶液体系,样品质量浓度为0.1g/L,还原型谷胱甘肽和氧化型谷胱甘肽的浓度分别为1.0mm o l/L和0.1mm o l/L、L-A rg浓度为1.0m o l/L。复性产物经质谱测定其相对分子质量为3 607.68;与天然毒素等量混合后用高效液相色谱分析得到单一峰;膈神经-膈肌标本生理实验结果表明,合成的毒素具有与天然毒素相同的生物学活性,从而可确定二者在结构与功能上具有一致性。展开更多
Li3V2(PO4)3 samples were synthesized by sol-gel route and high temperature solid-state reaction. The influence of Li3V2(PO4)3 as cathode materials for lithium-ion batteries on electrochemical performances was inve...Li3V2(PO4)3 samples were synthesized by sol-gel route and high temperature solid-state reaction. The influence of Li3V2(PO4)3 as cathode materials for lithium-ion batteries on electrochemical performances was investigated. The structure of Li3Va(PO4)3 as cathode materials for lithium-ion batteries and morphology of Li3V2(PO4)3 were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Electrochemical performances were characterized by charge/discharge and AC impedance measurements. Li3V2(PO4)3 with smaller grain size shows better performances in terms of the discharge capacity and cycle stability. The improved electrochemical properties of Li3V2(PO4)3 are attributed to the refined grains and enhanced electrical conductivity. AC impedance measurements also show that the Li3V2(PO4)3 synthesized by sol-gel route exhibits significantly decreased charge-transfer resistance and shortened migration distance of lithium ions.展开更多
文摘By using ion-exchange preparative chromatography (IEPC) and reversed-phase high performance liquid preparative chromatography(RP-HPLPC), thymosin α 1 was isolated and purified from the crude product synthesized by the solid-phase peptide synthesis(SPPS) method. The purity of the final product reached 95% through ion-exchange chromatography on DEAE Sepharose Fast Flow chromatography and Delta-Pak TM C18 purification after optimizing the chromatographic conditions. The capacity of purification process was 50mg/circle. The total yield was 36%. The technology is simple and reliable, and can be scaled up easily.
文摘应用芴甲氧羰基(Fm o c)固相化学合成了海南捕鸟蛛毒素-Ⅲ,并优化了其最佳氧化复性条件。最佳的氧化复性条件为pH7.5的重蒸水溶液体系,样品质量浓度为0.1g/L,还原型谷胱甘肽和氧化型谷胱甘肽的浓度分别为1.0mm o l/L和0.1mm o l/L、L-A rg浓度为1.0m o l/L。复性产物经质谱测定其相对分子质量为3 607.68;与天然毒素等量混合后用高效液相色谱分析得到单一峰;膈神经-膈肌标本生理实验结果表明,合成的毒素具有与天然毒素相同的生物学活性,从而可确定二者在结构与功能上具有一致性。
基金Projects(0991025,0842003-5 and 0832259) supported by Natural Science Foundation of Guangxi Province,ChinaProject supported by the Joint Graduate Innovation Talent Cultivation Base of Guangxi Province,ChinaProject(GuiJiaoRen[2007]71) supported by the Research Funds of the Guangxi Key Laboratory of Environmental Engineering,Protection and Assessment Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning,China
文摘Li3V2(PO4)3 samples were synthesized by sol-gel route and high temperature solid-state reaction. The influence of Li3V2(PO4)3 as cathode materials for lithium-ion batteries on electrochemical performances was investigated. The structure of Li3Va(PO4)3 as cathode materials for lithium-ion batteries and morphology of Li3V2(PO4)3 were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Electrochemical performances were characterized by charge/discharge and AC impedance measurements. Li3V2(PO4)3 with smaller grain size shows better performances in terms of the discharge capacity and cycle stability. The improved electrochemical properties of Li3V2(PO4)3 are attributed to the refined grains and enhanced electrical conductivity. AC impedance measurements also show that the Li3V2(PO4)3 synthesized by sol-gel route exhibits significantly decreased charge-transfer resistance and shortened migration distance of lithium ions.