期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
固相合金中的C-Me偏聚理论在陶瓷中的应用 被引量:5
1
作者 李志林 黄钦 +1 位作者 吴远启 李志峰 《中国科学(E辑)》 CSCD 北大核心 2007年第7期890-897,共8页
氧化锆陶瓷由于性能优异,已得到了广泛的应用.氧化锆陶瓷的相变影响其性能,为控制相变进而控制性能,相变机理的研究至关重要.用固体与分子经验电子理论计算了c-ZrO2、t-ZrO2和m-ZrO2的价电子结构,得到形成它们强键骨架的共价键上的总共... 氧化锆陶瓷由于性能优异,已得到了广泛的应用.氧化锆陶瓷的相变影响其性能,为控制相变进而控制性能,相变机理的研究至关重要.用固体与分子经验电子理论计算了c-ZrO2、t-ZrO2和m-ZrO2的价电子结构,得到形成它们强键骨架的共价键上的总共价电子对数分别为3.19184、3.45528和3.79625.按固相合金中的C-Me偏聚理论的思想推测ZrO2从高温到低温的相变顺序应为液相→c相→t相→m相.从价电子结构进行的推断与实验结果完全一致,说明合金相变的电子理论可以扩展到陶瓷材料中. 展开更多
关键词 固相合金 陶瓷 价电子结构
原文传递
固相合金中的C-Me偏聚理论 被引量:8
2
作者 刘志林 《科学通报》 EI CAS CSCD 北大核心 1989年第14期1055-1057,共3页
近代固溶体的微观不均匀性理论指出,当异类原子AB间的结合力大于同类原子AA、BB间的结合力时,溶质原子将按固定的规则呈短程有序分布。本文称这种短程有序为固相合金中的C-Me偏聚。如果用余瑞璜的“固体与分子经验电子理论”中的共价键... 近代固溶体的微观不均匀性理论指出,当异类原子AB间的结合力大于同类原子AA、BB间的结合力时,溶质原子将按固定的规则呈短程有序分布。本文称这种短程有序为固相合金中的C-Me偏聚。如果用余瑞璜的“固体与分子经验电子理论”中的共价键上共用电子对的值n_α表示AB、AA、BB原子间结合倾向的大小,那么对固相合金可提出如下假设: 展开更多
关键词 固相合金 奥氏体 偏聚 C-Me偏聚
原文传递
Role of tensile forces in hot tearing formation of cast Al-Si alloy 被引量:4
3
作者 许荣福 郑洪亮 +3 位作者 罗杰 丁苏沛 张三平 田学雷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2203-2207,共5页
The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was... The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was used to identify hot tearing initiation and propagation and the fracture surface of samples was also investigated. The result shows that the applied tensile forces have a complex effect on load onset for the hot tearing initiation and propagation. During the casting solidification, the tensile forces are gradually increased with the increase of solid fraction. Under the action of tensile forces, there will appear hot tearing and crack propagation on the surface of the sample. When the tensile forces exceed the inherent strength of alloys, there will be fractures on the sample. As for the A356 alloy, the critical fracture stress is about 0.1 MPa. The hot tearing surface morphology shows that the remaining intergranular bridge and liquid films are thick enough to allow the formation of dendrite-tip bumps on the fracture surface. 展开更多
关键词 hot tearing tensile force A356 alloy aluminum alloy liquid film solid fraction
下载PDF
Effect of silicon on phase selection of ternary compounds during solidification of ZA84 magnesium alloy 被引量:2
4
作者 张春香 关绍康 +2 位作者 刘涛 李少华 刘忠侠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期52-57,共6页
Effect of silicon on the phase selection between τ phase(Mg32(Al,Zn)49) and φ phase(Al2Mg5Zn2) in ZA84(Mg-8Zn-4Al-0.3Mn) magnesium alloy produced by steel mold cast was studied using X-ray diffractometer,sca... Effect of silicon on the phase selection between τ phase(Mg32(Al,Zn)49) and φ phase(Al2Mg5Zn2) in ZA84(Mg-8Zn-4Al-0.3Mn) magnesium alloy produced by steel mold cast was studied using X-ray diffractometer,scanning electron microscope and differential scanning calorimeter.The results show that with increasing Si addition in ZA84 alloy,the liquidus temperatures of the alloys and the solidification temperature ranges decrease.The ternary compound in ZA84 alloy is mainly τ phase and a little φ phase.When adding Si to ZA84 alloy,the preferential precipitation sequence of the ternary compounds changes,φ phase preferentially forms,whereas τ phase is suppressed.The solidification kinetics study of phase selection indicates that there is a critical degree of undercooling of the melt.If the undercooling exceeds the critical degree,τ phase preferentially forms while φ phase is suppressed;otherwise,φ phase preferentially forms while τ phase is suppressed. 展开更多
关键词 ZA84 alloy SILICON phase selection solidification kinetics
下载PDF
Numerical simulation for solid- liquid phase change of metal sodium in combined wick
5
作者 于萍 张红 +1 位作者 许辉 沈妍 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期456-461,共6页
Based on the finite volume method and the enthalpy-porous model the solid-liquid phase change of sodium in the combined wick is numerically studied.The one-temperature model is used since the thermal conductivity of s... Based on the finite volume method and the enthalpy-porous model the solid-liquid phase change of sodium in the combined wick is numerically studied.The one-temperature model is used since the thermal conductivity of sodium is close to that of the combined wick materials.The non-Darcy law and natural convection in the melting process are taken into account.The results show that a thin metal fiber felt in the combined wick can result in a faster melting rate of the sodium and a shorter time for the molten sodium to reach the maximum velocity which can shorten the time for the high-temperature heat pipe startup.A thick metal fiber felt in the combined wick can result in a uniform temperature distribution in the vertical heating wall and a small wall temperature difference which can reduce the possibility of an overheat spot. 展开更多
关键词 solid-liquid phase change combined wick SODIUM porous media
下载PDF
TEM microstructure of rapidly solidified Mg-6Zn-1Y-1Ce alloy
6
作者 杨文朋 郭学锋 卢正欣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期786-792,共7页
Rapidly solidified(RS) Mg-6Zn-1Y-1Ce ribbons were prepared by single roller melt-spinning technique.Transmission electron microscopy and energy dispersive X-ray spectroscopy were employed to characterize the microst... Rapidly solidified(RS) Mg-6Zn-1Y-1Ce ribbons were prepared by single roller melt-spinning technique.Transmission electron microscopy and energy dispersive X-ray spectroscopy were employed to characterize the microstructure of RS ribbons.The results show that there is high density of particles distributed within grains and at grain boundaries in the region near wheel side.The particle density is decreased in the middle region and free surface region.The alloy is predominantly composed of supersaturated--Mg solid solution,T phase and W phase;meanwhile,a few icosahedral quasicrystalline and Mg4Zn7 particles are also observed.The T phase is confirmed having a body-centered orthorhombic structure that is transformed from the body-centered tetragonal structure Mg12Ce phase due to the partial substitution of Mg atoms by Zn. 展开更多
关键词 Mg-6Zn-1Y-1Ce alloy rapid solidification T phase icosahedral quasicrystalline Mg4Zn7 phase W phase
下载PDF
Rapid solidification of Cu_(60)Co_(30)Cr_(10) alloy under different conditions 被引量:2
7
作者 郭晋波 曹崇德 +6 位作者 弓素莲 宋瑞波 白晓军 王建元 郑建邦 文喜星 孙占波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期731-734,共4页
Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the ... Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the alloy generally has a microstructure consisting of a(Co,Cr)-rich phase embedded in a Cu-rich matrix,and the morphology and size of the(Co,Cr)-rich phase vary drastically with cooling rate.During the electromagnetic levitation solidification processing the cooling rate is lower,resulting in an obvious coalescence tendency of the(Co,Cr)-rich spheroids.The(Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates.In the splat quenched samples the(Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed.This is probably due to the higher cooling rate,undercooling and interface tension. 展开更多
关键词 Cu-Co-Cr alloy rapid solidification metastable liquid phase separation electromagnetic levitation splat-quenching
下载PDF
Mechanochemical redox-based synthesis of highly porous CoxMn1-xOy catalysts for total oxidation 被引量:2
8
作者 Jiafeng Bao Hao Chen +1 位作者 Shize Yang Pengfei Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1846-1854,共9页
A mechanochemical redox reaction between KMnO4 and CoCl2 was developed to obtain a CoxMn1-xOy catalyst with a specific surface area of 479 m^2 g^-1,which was higher than that obtained using a co-precipitation(CP)metho... A mechanochemical redox reaction between KMnO4 and CoCl2 was developed to obtain a CoxMn1-xOy catalyst with a specific surface area of 479 m^2 g^-1,which was higher than that obtained using a co-precipitation(CP)method(34 m2 g^-1),sol-gel(SG)method(72 m^2 g^-1),or solution redox process(131 m^2 g^-1).During catalytic combustion,this CoxMn1-xOy catalyst exhibited better activity(T100 for propylene=~200℃)than the control catalysts obtained using the SG(325℃)or CP(450℃)methods.The mechanical action,mainly in the form of kinetic energy and frictional heating,may generate a high degree of interstitial porosity,while the redox reaction could contribute to good dispersion of cobalt and manganese species.Moreover,the as-prepared CoxMn1-xOy catalyst worked well in the presence of water vapor(H2O 4.2%,>60 h)or SO2(100 ppm)and at high temperature(400℃,>60 h).The structure MnO2·(CoOOH)2.93 was suggested for the current CoxMn1-xOy catalyst.This catalyst could be extended to the total oxidation of other typical hydrocarbons(T90=150°C for ethanol,T90=225°C for acetone,T90=250℃for toluene,T90=120℃for CO,and T90=540℃for CH4).Scale-up of the synthesis of CoxMn1-xOy catalyst(1 kg)can be achieved via ball milling,which may provide a potential strategy for real world catalysis. 展开更多
关键词 Mechanochemical synthesis Solid-state synthesis Porous metal oxide CoxMn1-xOy catalyst Hydrocarbon combustion
下载PDF
Conception of tooling adapted to thixoforging of high solid fraction hot-crack-sensitive aluminium alloys 被引量:3
9
作者 G.VANEETVELD A.RASSILI +1 位作者 J.C.PIERRET J.LECOMTE-BECKERS 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1712-1718,共7页
Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<φs<1), which involves the processing of alloys in the semi-solid state.Tooling has to be adapted to this particular process to b... Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<φs<1), which involves the processing of alloys in the semi-solid state.Tooling has to be adapted to this particular process to benefit shear thinning and thixotropic behaviour of such semi-solid material.Tooling parameters, such as the forming speed and tool temperature, have to be accurately controlled because of their influence on thermal exchanges between material flow and tool.These thermal exchanges influence the high-cracking tendency and the rheology of the semi-solid material during forming, which affects parts properties and therefore their quality.Extrusion tests show how thermal exchanges influence quality of thixoforged parts made of 7075 aluminium alloys at high solid fraction by modifying process parameters like forming speed, tool temperature and tool thermal protector.Thus an optimum in terms of thermal exchanges has to be found between surface quality and mechanical properties of the part.A direct application is the evaluation of surface quality of thixoforged thin wall parts made of 7075 aluminium alloy. 展开更多
关键词 THIXOFORGING solid fraction near-net-shaping TOOLING 7075 aluminium alloys
下载PDF
Sustainable solid-state synthesis of uniformly distributed PdAg alloy nanoparticles for electrocatalytic hydrogen oxidation and evolution 被引量:1
10
作者 Caili Xu Qian Chen +3 位作者 Rong Ding Shengtian Huang Yun Zhang Guangyin Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期251-258,共8页
New sustainable syntheses based on solid-state strategies have sparked enormous attention and provided novel routes for the synthesis of supported metallic alloy nanocatalysts(SMACs).Despite considerable recent progre... New sustainable syntheses based on solid-state strategies have sparked enormous attention and provided novel routes for the synthesis of supported metallic alloy nanocatalysts(SMACs).Despite considerable recent progress in this field,most of the developed methods suffer from either complex operations or poorly controlled morphology,which seriously limits their practical applications.Here,we have developed a sustainable strategy for the synthesis of PdAg alloy nanoparticles(NPs)with an ultrafine size and good dispersion on various carbon matrices by directly grinding the precursors in an agate mortar at room temperature.Interestingly,no solvents or organic reagents are used in the synthesis procedure.This simple and green synthesis procedure provides alloy NPs with clean surfaces and thus an abundance of accessible active sites.Based on the combination of this property and the synergistic and alloy effects between Pd and Ag atoms,which endow the NPs with high intrinsic activity,the PdAg/C samples exhibit excellent activities as electrocatalysts for both the hydrogen oxidation and evolution reactions(HOR and HER)in a basic medium.Pd9Ag1/C showed the highest activity in the HOR with the largest j0,m value of 26.5 A g Pd^–1 and j0,s value of 0.033 mA cmPd^–2,as well as in the HER,with the lowest overpotential of 68 mV at 10 mA cm^–2.As this synthetic method can be easily adapted to other systems,the present scalable solid-state strategy may open opportunity for the general synthesis of a wide range of well-defined SMACs for diverse applications. 展开更多
关键词 Solid-state synthesis Supported metallic alloy nanoparticles ELECTROCATALYSIS Hydrogen oxidation reaction Hydrogen evolution reaction
下载PDF
Cellular/dendritic transition,dendritic growth and microhardness in directionally solidified monophasic Sn-2%Sb alloy 被引量:2
11
作者 O.L.ROCHA T.A.COSTA +1 位作者 M.DIAS A.GARCIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1679-1686,共8页
Horizontal directional solidification experiments were carried out with a monophasic Sn-2%Sb(mass fraction) alloy to analyze the influence of solidification thermal parameters on the morphology and length scale of t... Horizontal directional solidification experiments were carried out with a monophasic Sn-2%Sb(mass fraction) alloy to analyze the influence of solidification thermal parameters on the morphology and length scale of the microstructure. Continuous temperature measurements were made during solidification at different positions along the length of the casting and these temperature data were used to determine solidification thermal parameters, including the growth rate(VL) and the cooling rate(TR). High cooling rate cells and dendrites are shown to characterize the microstructure in different regions of the casting, with a reverse dendrite-to-cell transition occurring for TR5.0 K/s. Cellular(λc) and primary dendrite arm spacings(λ1) are determined along the length of the directionally-solidified casting. Experimental growth laws relating λc and λ1 to VL and TR are proposed, and a comparative analysis with results from a vertical upward directional solidification experiment is carried out. The influence of morphology and length scale of the microstructure on microhardness is also analyzed. 展开更多
关键词 Sn-Sb monophasic alloy directional solidification thermal paIameters inicrostructure reverse cellular/dendritictransition
下载PDF
Vertical section phase diagrams of La−Fe−B ternary system 被引量:2
12
作者 Qi WEI Zhao LU +4 位作者 Qing-rong YAO Jian-qiu DENG Jiang WANG Huai-ying ZHOU Guang-hui RAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1748-1757,共10页
The vertical sections of the La−Fe−B system were investigated using electron probe microanalysis and differential thermal analysis.Based on the microstructures and phase compositions of the as-cast and equilibrium all... The vertical sections of the La−Fe−B system were investigated using electron probe microanalysis and differential thermal analysis.Based on the microstructures and phase compositions of the as-cast and equilibrium alloys,together with their heat flow−temperature curves,phase diagrams for three vertical sections were drawn:La_(x)Fe_(82)B_(y)(x+y=18),La_(x)Fe_(70)B_(y)(x+y=30)and La_(x)Fe_(53)B_(y)(x+y=47),where x and y represent mass fraction of La and B,respectively,%.Additionally,according to the phase diagrams,the compound La2Fe14B was identified as a stable phase at high temperatures.It was found to be stable between 926.2 and 792.6℃;at low temperatures,however,it decomposed into α-La,α-Fe and LaFe_(4)B_(4),according to the reaction La_(2)Fe_(14)B→α-Fe+α-La+LaFe_(4)B_(4). 展开更多
关键词 solidification characteristics vertical section phase diagram equilibrium alloy high temperature stable compound
下载PDF
Interface kinetics modeling of binary alloy solidification by considering correlation between thermodynamics and kinetics 被引量:2
13
作者 Shu LI Yu-bing ZHANG +1 位作者 Kang WANG Feng LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期306-316,共11页
By considering collision-limited growth mode and short-range diffusion-limited growth mode simultaneously,an extended kinetic model for solid−liquid interface with varied kinetic prefactor was developed for binary all... By considering collision-limited growth mode and short-range diffusion-limited growth mode simultaneously,an extended kinetic model for solid−liquid interface with varied kinetic prefactor was developed for binary alloys.Four potential correlations arising from effective kinetics coupling the two growth modes were proposed and studied by application to planar interface migration and dendritic solidification,where the linear correlation between the effective thermodynamic driving force and the effective kinetic energy barrier seems physically realistic.A better agreement between the results of free dendritic growth model and the available experiment data for Ni−0.7at.%B alloy was obtained based on correlation between the thermodynamics and kinetics.As compared to previous models assuming constant kinetic prefactor,a common phenomenon occurring at relatively low undercoolings,i.e.the interface migration slowdown,can be ascribed to both the thermodynamic and the kinetic factors.By considering universality of the correlation between the thermodynamics and kinetics,it is concluded that the correlation should be considered to model the interface kinetics in alloy solidification. 展开更多
关键词 modelling INTERFACE dendritic solidification binary alloy THERMODYNAMICS KINETICS CORRELATION
下载PDF
Refinement and strengthening mechanism of Mg−Zn−Cu−Zr−Ca alloy solidified under extremely high pressure 被引量:3
14
作者 Xiao-ping LIN Yang KUO +4 位作者 Lin WANG Jie YE Chong ZHANG Li WANG Kun-yu GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1587-1598,共12页
Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect o... Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa. 展开更多
关键词 high pressure solidification Mg−Zn−Cu−Zr−Ca alloy Mg_(2)Ca particle solution strengthening grain refinement strengthening
下载PDF
Effects of semi-solid isothermal process parameters on microstructure of Mg-Gd alloy 被引量:6
15
作者 苏桂花 曹占义 +3 位作者 刘勇兵 王玉慧 张亮 程丽任 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期402-406,共5页
The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the partic... The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the particles in the process of the isothermal treatment was also discussed.The results show that the microstructure of the as-cast alloy consists ofα-Mg solid solution, Mg5RE and Mg24RE5(Gd,Y,Nd)phase.After being extruded with an extrusion ratio of 14:1 at 380℃,the microstructure of Mg-Gd alloy changes from developed dendrites to near-equiaxed grains.The liquid volume fraction of the semisolid slurry gradually increases with elevating isothermal temperature or prolonging isothermal time during the partial remelting.To obtain an ideal semisolid slurry,the optimal process parameters for the Mg-Gd alloy should be 630℃for isothermal temperature and 30 min for the corresponding time,respectively,where the volume fraction of the liquid phase is 52%. 展开更多
关键词 magnesium alloy Mg-Gd alloy rare earth strain-induced melt activation SEMISOLID isothermal treatment
下载PDF
Synthesis and Re-refinement of Cu_3PSe_4
16
作者 马宏伟 郭国聪 +4 位作者 周国伟 王明盛 林善伙 董振超 黄锦顺 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2002年第3期288-291,共4页
The title compound Cu3PSe4 was synthesized by the reaction of CuCl, P2Se5 and Se in a molar ratio of 1:1:1 at 500 C and structurally characterized by X-ray crystallography. The crystal belongs to orthorhombic, space g... The title compound Cu3PSe4 was synthesized by the reaction of CuCl, P2Se5 and Se in a molar ratio of 1:1:1 at 500 C and structurally characterized by X-ray crystallography. The crystal belongs to orthorhombic, space group Pmn21 with cell parameters: a = 7.685(2), b = 6.656(1), c = 6.377(1) , V = 326.2(1) 3, Z = 2, Dc = 5.472 g/cm3, Mr = 537.43, F(000) = 476, m = 32.12 mm-1, R = 0.0642, wR = 0.1481 and S = 1.037. The 3-D structure can be regarded as constructed from the alternately stacking of [Cu(2)Se4] tetrahedral layers and Cu(1)PSe tetrahedral layers along the b direction, in which the Cu(2)Se layer is comprised of corner-sharing [Cu(2)Se4] tetrahedra along the a and c directions, and the Cu(1)PSe layer is consisted of alternately corner-sharing [Cu(1)Se4] tetrahedra and [PSe4] tetrahedra along the a and c directions. 展开更多
关键词 solid state reaction normal tetrahedral structure metal chalcogenophosphide
下载PDF
Effect of magnesium on dispersoid strengthening of Al-Mn-Mg-Si(3xxx) alloys
17
作者 李震 张展 X-Grant GHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2793-2799,共7页
The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical ... The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical microscopy and transmissionelectron microscopy. The results reveal that Mg has a strong influence on the distribution and volume fraction of dispersoids duringprecipitation heat treatment. The microhardness and yield strength at ambient temperature increase with increasing Mg content. Thesolid solution and dispersoid strengthening mechanisms of materials after heat treatment are quantitatively analyzed. Dispersoidstrengthening for the alloys is the predominant strengthening mechanism after precipitation heat treatment. An analytical model isintroduced to predict the evolution of ambient-temperature yield strength. 展开更多
关键词 aluminum alloy Mg dispersoid strengthening solid solution strengthening microstructure characterization mechanicalproperties
下载PDF
Modeling and Measurements of Heat Transfer Phenomena in Two-Phase PbSn Alloy Solidification in an External Magnetic Field
18
作者 P.A.Nikrityuk K.Eckert +2 位作者 R.Grundmann B. Willers S. Eckert 《Journal of Thermal Science》 SCIE EI CAS CSCD 2003年第4期357-362,共6页
The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical m... The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical model for the directional solidification of a binary alloy in a magnetic field is presented. The model includes mass, momentum, energy and species mass conservation equations written in compressible form and additional relationships describing the temperature-solute coupling. The geometry under study is a cylindrical mold with adiabatic walls and cooled bottom. The macroscale transport in the solidification of alloys is governed by the progress of the two-phase mushy zone, which is treated by means of a porous medium approach. The volume fraction of liquid and solid phases, respectively, is calculated from a 2D approximation of the phase diagram. The results of calculation are compared with experimental data. 展开更多
关键词 SOLIDIFICATION MEASUREMENTS mushy zone Lorentz force rotating magnetic field.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部