Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4)∶n(LiNO3)∶n(LiBr)=1.6∶3.8∶1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-...Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4)∶n(LiNO3)∶n(LiBr)=1.6∶3.8∶1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes were prepared with poly(lithium acrylate-acrylonitrile) and (LiClO4-LiNO3-LiBr) eutectic salts. The effect of LiClO4-LiNO3-LiBr eutectic salts content on the conductivity of solid polymer electrolytes was studied by alternating current impedance method, and the structures of eutectic salts and solid polymer electrolytes were characterized by differential thermal analysis, infrared spectroscopy and X-ray diffractometry. The results show that the room temperature conductivity of LiClO4-LiNO3-LiBr eutectic salts reaches (3.11×10-4 S·cm-1.) The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes possess the highest room temperature conductivity at 70% LiClO4-LiNO3-LiBr eutectic salts content, and exhibit lower glass transition temperature of 75 ℃ compared with that of poly(lithium acrylate-acrylonitrile) of 105 ℃. A complex may be formed in the solid polymer electrolytes from the differential thermal analysis and infrared spectroscopy analysis. X-ray diffraction results show that the poly(lithium acrylate-acrylonitrile) can suppress the crystallization of eutectic salts in this system.展开更多
According to the uncertainties in the results and the wide diversity of how to approach the subject, a new concept for energy is proposed: Energy is an exchange between two different concentrations, the concentration...According to the uncertainties in the results and the wide diversity of how to approach the subject, a new concept for energy is proposed: Energy is an exchange between two different concentrations, the concentration of time in space outside what we call matter and the concentrated phase of time in matter space which is the matter itself. The concept of motion for energy is replaced by time-space interactions with time taken as solid matter. Motion enhances the exchange between the mass and its surrounding time in space, annihilation and creation are special forms of this exchange. During the motion of a mass, it increases as a result of this dissolution. Time concentration in Fock space is responsible for the collision phenomena in physics. In this paper, a new mathematical operator (the equal operator) is introduced.展开更多
The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an anal...The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an analytical theory onstimulated γ photon emission from a hot electron firing the target-nucleus is developed by a relativistic full quantummethod. The emitting power or probability of γ photon in arbitrary space direction can be calculated for laser irradiatingsolid-target normally. It is valid only if the scatter-centre is immovable or its motion can be neglected compared withthat of the scattered electrons.展开更多
Many researchers in academia and industries are interested in reducing particle sizes from few submicrometers to nano-meter levels.These nano-particles find application in several areas including ceramics,paints,cosme...Many researchers in academia and industries are interested in reducing particle sizes from few submicrometers to nano-meter levels.These nano-particles find application in several areas including ceramics,paints,cosmetics,microelectronics,sensors,textiles and biomedical,etc.This article reviews the present state of the art for solid state synthesis of mineral nano-particles by wet milling,including their operating variables such as ball size,solid mass fraction and suspension stability.This article concludes and recommends with a critical discussion of nano-particles synthesis and a few common strategies to overcome stability issues.展开更多
The aim of this study was to determine the volatile composition of essential oil of four Picea Mill. species (Piceapungens Engelm., Picea mariana (Mill.) Britton, Picea glauca (Moench) Voss., Picea rubens Sarg.)...The aim of this study was to determine the volatile composition of essential oil of four Picea Mill. species (Piceapungens Engelm., Picea mariana (Mill.) Britton, Picea glauca (Moench) Voss., Picea rubens Sarg.) needles. The volatile components extracted from these four species needles were analyzed by using headspace solid phase microextraction (HS-SPME)/gas chromatography-mass spectrum (GC-MS) and 31, 34, 27 and 24 compounds were identified representing 91.77%, 92.70% 92.38% and 94.06% of the total oil, respectively. The major constituents were found to be bornylacetate (29.40%), camphor (26.43%), 13-myrcene (7.47%) and camphene (7.01%) in P. pungens; camphene (22.03%), bornylacetate (21.64%), α-pinene (16.62%) and borneol (7.79%) in P. mariana; bornylacetate (31.25%), limonene (17.27%), α-pinene (15.85%); camphene (13.65%) in P. glauca and borneol (12.38%), α-pinene (10.36%), germacrene D (9.86%) and δ-cadinene (8.25%) in P. rubens. This study sought to detecte new phytochemical data on the Picea genus to help chemotaxonomy and usable of studied species.展开更多
The origin of the shallow decay segment in γ-ray bursts' (GRB) early light curves remains a mystery, especially those cases with a long-lived plateau followed by an abrupt falloff. In this paper, we propose to un...The origin of the shallow decay segment in γ-ray bursts' (GRB) early light curves remains a mystery, especially those cases with a long-lived plateau followed by an abrupt falloff. In this paper, we propose to understand the origins of the long-lived plateau by considering the solidification of newborn quark stars with latent heat released as energy injection to the GRB afterglow, and we suggest that an abrupt falloff would naturally appear after the plateau due to the energy injection cutoff. We estimated the total latent heat released during the phase transition of quark stars from liquid to solid states to be on the order of ~ 1051 ergs, which is comparable to the emission energy in the shallow decay segment. We also estimated the time scale of radiating the latent heat through thermal photon emission, and found that the time scale agrees with the observations. Based on our estimation, we analyzed the process of energy injection to GRB afterglow. We will show that the steady latent heat of quark star phase transition will continuously inject into the GRB afterglow in a form similar to that of a Poynting-flux-dominated outflow and naturally produce the shallow decay phase and the abrupt falloff after the plateau. We conclude that the latent heat of quark star phase transition is an important contribution to the shallow decay radiation in some GRB afterglows, and explains the long-lived plateau followed by an abrupt falloff, if pulsar-like stars are really (solid) quark stars.展开更多
文摘Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4)∶n(LiNO3)∶n(LiBr)=1.6∶3.8∶1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes were prepared with poly(lithium acrylate-acrylonitrile) and (LiClO4-LiNO3-LiBr) eutectic salts. The effect of LiClO4-LiNO3-LiBr eutectic salts content on the conductivity of solid polymer electrolytes was studied by alternating current impedance method, and the structures of eutectic salts and solid polymer electrolytes were characterized by differential thermal analysis, infrared spectroscopy and X-ray diffractometry. The results show that the room temperature conductivity of LiClO4-LiNO3-LiBr eutectic salts reaches (3.11×10-4 S·cm-1.) The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes possess the highest room temperature conductivity at 70% LiClO4-LiNO3-LiBr eutectic salts content, and exhibit lower glass transition temperature of 75 ℃ compared with that of poly(lithium acrylate-acrylonitrile) of 105 ℃. A complex may be formed in the solid polymer electrolytes from the differential thermal analysis and infrared spectroscopy analysis. X-ray diffraction results show that the poly(lithium acrylate-acrylonitrile) can suppress the crystallization of eutectic salts in this system.
文摘According to the uncertainties in the results and the wide diversity of how to approach the subject, a new concept for energy is proposed: Energy is an exchange between two different concentrations, the concentration of time in space outside what we call matter and the concentrated phase of time in matter space which is the matter itself. The concept of motion for energy is replaced by time-space interactions with time taken as solid matter. Motion enhances the exchange between the mass and its surrounding time in space, annihilation and creation are special forms of this exchange. During the motion of a mass, it increases as a result of this dissolution. Time concentration in Fock space is responsible for the collision phenomena in physics. In this paper, a new mathematical operator (the equal operator) is introduced.
文摘The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an analytical theory onstimulated γ photon emission from a hot electron firing the target-nucleus is developed by a relativistic full quantummethod. The emitting power or probability of γ photon in arbitrary space direction can be calculated for laser irradiatingsolid-target normally. It is valid only if the scatter-centre is immovable or its motion can be neglected compared withthat of the scattered electrons.
文摘Many researchers in academia and industries are interested in reducing particle sizes from few submicrometers to nano-meter levels.These nano-particles find application in several areas including ceramics,paints,cosmetics,microelectronics,sensors,textiles and biomedical,etc.This article reviews the present state of the art for solid state synthesis of mineral nano-particles by wet milling,including their operating variables such as ball size,solid mass fraction and suspension stability.This article concludes and recommends with a critical discussion of nano-particles synthesis and a few common strategies to overcome stability issues.
文摘The aim of this study was to determine the volatile composition of essential oil of four Picea Mill. species (Piceapungens Engelm., Picea mariana (Mill.) Britton, Picea glauca (Moench) Voss., Picea rubens Sarg.) needles. The volatile components extracted from these four species needles were analyzed by using headspace solid phase microextraction (HS-SPME)/gas chromatography-mass spectrum (GC-MS) and 31, 34, 27 and 24 compounds were identified representing 91.77%, 92.70% 92.38% and 94.06% of the total oil, respectively. The major constituents were found to be bornylacetate (29.40%), camphor (26.43%), 13-myrcene (7.47%) and camphene (7.01%) in P. pungens; camphene (22.03%), bornylacetate (21.64%), α-pinene (16.62%) and borneol (7.79%) in P. mariana; bornylacetate (31.25%), limonene (17.27%), α-pinene (15.85%); camphene (13.65%) in P. glauca and borneol (12.38%), α-pinene (10.36%), germacrene D (9.86%) and δ-cadinene (8.25%) in P. rubens. This study sought to detecte new phytochemical data on the Picea genus to help chemotaxonomy and usable of studied species.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10973002, 10973003 and 10935001)the National Basic Research Program of China (Grant Nos. 2009CB24901, 2009CB824800)the John Templeton Foundation and the National Fund for Fostering Talents of Basic Science (Grant No. J0630311)
文摘The origin of the shallow decay segment in γ-ray bursts' (GRB) early light curves remains a mystery, especially those cases with a long-lived plateau followed by an abrupt falloff. In this paper, we propose to understand the origins of the long-lived plateau by considering the solidification of newborn quark stars with latent heat released as energy injection to the GRB afterglow, and we suggest that an abrupt falloff would naturally appear after the plateau due to the energy injection cutoff. We estimated the total latent heat released during the phase transition of quark stars from liquid to solid states to be on the order of ~ 1051 ergs, which is comparable to the emission energy in the shallow decay segment. We also estimated the time scale of radiating the latent heat through thermal photon emission, and found that the time scale agrees with the observations. Based on our estimation, we analyzed the process of energy injection to GRB afterglow. We will show that the steady latent heat of quark star phase transition will continuously inject into the GRB afterglow in a form similar to that of a Poynting-flux-dominated outflow and naturally produce the shallow decay phase and the abrupt falloff after the plateau. We conclude that the latent heat of quark star phase transition is an important contribution to the shallow decay radiation in some GRB afterglows, and explains the long-lived plateau followed by an abrupt falloff, if pulsar-like stars are really (solid) quark stars.