A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was ...A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer.展开更多
Immiscible Cu-W alloy thin films were prepared using dual-target magnetron sputtering deposition process. The structure evolution of Cu-W thin films during preparation was investigated by X-ray diffraction, transmissi...Immiscible Cu-W alloy thin films were prepared using dual-target magnetron sputtering deposition process. The structure evolution of Cu-W thin films during preparation was investigated by X-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy. In the initial stage of dual-target magnetron sputtering deposition process, an amorphous phase formed; then it crystallized and the analogy spinodal structure formed due to the bombardment of the sputtered particles during sputtering deposition process, the surface structure of the film without the bombardment of the sputtered particles was the amorphous one, the distribution of the crystalline and amorphous phase showed layer structure. The solid solubility with the analogy spinodal structure was calculated using the Vegard law. For Cu-13.7%W (mole fraction) film, its structure was composed of Cu-ll%W solution, Cu-37%W solution and pure Cu; for Cu 14.3%W film, it was composed of Cu-15%W solution, Cu-38%W solution, and pure Cu; for Cu-18.1%W film, it was composed of Cu-19%W solution, Cu-36% W solution and pure Cu.展开更多
The solid state morphology of the tri block copolymer PS b PCEMA b PtBA, which was synthesized by anionic polymerization with narrow molecular weight distribution, was in lamella structure from TEM micrographs. After ...The solid state morphology of the tri block copolymer PS b PCEMA b PtBA, which was synthesized by anionic polymerization with narrow molecular weight distribution, was in lamella structure from TEM micrographs. After being blended with polystyrene with the mass ratio of 1∶0 4, the morphology showed cylinder structure. With PS as continous phase, PCEMA and PtBA phases formed cylinders with PCEMA as outer layer. The nanofibres can be got and dispersed in good solvents of PS when the PCEMA phase was crosslinked. The t butyl group in PtBA phase can be cleavaged by reacting with TMSI, and nanofibres changed to nanotubes finally. It has the great potential applications, such as in the preparation of nanowires, template polymerization, nano reactor etc ..展开更多
The role of structural design of nanosystems, i.e. systems with high density of surfaces, boundaries and interfaces greatly increases as material science rapidly develops in the direction of molecular and atomic assem...The role of structural design of nanosystems, i.e. systems with high density of surfaces, boundaries and interfaces greatly increases as material science rapidly develops in the direction of molecular and atomic assembly technology of materials and constructions. The processes occurring in interface layers determine the unique properties of nanosystems. The evolution of a substance in a boundary layer tends to a stationary state corresponding to external conditions. For micro(nano)-systems interfaces corresponding to a symmetry dictated energy extremum can be selected as states -attractors. To optimize structural design, forecasting and achievement of desirable characteristics, the processes of internal structural self-organization of a system should be in resonance with processes of controlling external influences (synergy resonance principle). This approach, together with earlier developed crystallochemical methods of searching for symmetry preferred interfaces of heteroepitaxy, allows one to carry out modeling generation and experimental selection of nanosystems with desirable properties and purposeful nanodesigning to create new materials, structures and devices. In view these tasks the discussion concentrates on: (1) Processes of special boundary texture formation in order to obtain high stable magnetic properties of permanent magnets on the basis of Sm-Co powders; (2) Processes of structural self-organization and boundary design upon Bi, Bi-Sb nanofilm formation with a big length of electron mean free path; (3) Creation of coherent solid-state heterojunctions of superionic conductor- an electronic conductor in order to conserve fast ionic transport and low activation energy of ion-movement in the crystal layer interface. Formation of such heterojunctions is of the key role in the creation of new types of devices with high frequency - capacitance characteristics and a necessary element for the future information technologies, namely, wireless networks of autonomous microsensors and microrobots.展开更多
This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of str...This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of structure parameters with solids concentration, showing the tendency for particles to aggregate to form clusters and for fluid to pass around clusters. The global drag coefficient is resolved into that for the dense phase, for the dilute phase and for the so-called inter-phase, all of which can be obtained from their respective phase-specific structure parameters. The computational results show that the drag coefficients of the different phases are quite different, and the global drag coefficient calculated from the EMMS approach is much lower than that from the correlation of Wen and Yu. The simulation results demonstrate that the EMMS approach can well describe the heterogeneous flow structure, and is very promising for incorporation into the two-fluid model or the discrete particle model as the closure law for drag coefficient.展开更多
Slurry processing experiments were performed with AlSi7Mg0.6 to identify the globularization mechanisms.The melt sample water quenched slightly above the liquidus point is predominantly dendritic while that cooled int...Slurry processing experiments were performed with AlSi7Mg0.6 to identify the globularization mechanisms.The melt sample water quenched slightly above the liquidus point is predominantly dendritic while that cooled into the semi-solid temperature range internally via stirring the melt with a rotating cylindrical block of the alloy itself becomes fully globular.The globules are much smaller when internal cooling and stirring are employed longer to achieve higher solid fractions before casting.Coarse dendrite fragments of various sizes are revealed,in the case of stirring after an initial fraction of solid is first formed without the benefit of additional internal cooling.展开更多
Calculations have been performed to investigate the pressure-induced solid-solid phase transitions and the mechanical stability for three zinc-blende II-VI semiconductor compounds: ZnS, ZnSe, ZnTe by ab initio plane-...Calculations have been performed to investigate the pressure-induced solid-solid phase transitions and the mechanical stability for three zinc-blende II-VI semiconductor compounds: ZnS, ZnSe, ZnTe by ab initio plane-wave pseudopotential density functional theory (DFT). Using the generalized gradient approximation (GGA) for exchange and correlation in the scheme of Perdew-Wang 1991 (P Wgl ), the ground state properties and equation of state are obtained, which are well consistent with the experimental data available and other calculations. On the basis of the forth-order Birch-Murnaghan equation of states, the transition pressures Pt are determined through the analysis of enthalpy variation with pressure. A linear-response approach is used to calculate the frequencies of the phonon dispersion. Finally, by the calculations of phonon frequencies, some thermodynamic properties such as the vibrational contribution to the Helmholtz free energy (F), enthedpy (H), entropy (S), and the heat capacity (Cv ) are also successfully obtained.展开更多
The title compound Ag3PSe4 was synthesized by the reaction of Ag powder, P2Se5 and Se in a molar ratio of 1:1:1 at 500 C and structurally characterized by X-ray crystallography. The crystal belongs to orthorhombic, sp...The title compound Ag3PSe4 was synthesized by the reaction of Ag powder, P2Se5 and Se in a molar ratio of 1:1:1 at 500 C and structurally characterized by X-ray crystallography. The crystal belongs to orthorhombic, space group Pmn21 with cell parameters: a = 7.689(4), b = 6.660(3), c = 6.379(4) , V = 326.7(3) 3, Z = 2, Dc = 6.816 g/cm3, Mr = 670.42, F(000) = 584, m = 31.302 mm-1, R = 0.0606, wR = 0.1289 and S = 1.012. The 3-D structure can be regarded as constructed from the stacking of puckered AgPSe honeycomb-like sheets along the c direction, in which the Ag, P and Se atoms are bonded to each other to form a chair-like six-membered ring, and the rings then build the sheets by sharing edges.展开更多
The title compound Cu3PSe4 was synthesized by the reaction of CuCl, P2Se5 and Se in a molar ratio of 1:1:1 at 500 C and structurally characterized by X-ray crystallography. The crystal belongs to orthorhombic, space g...The title compound Cu3PSe4 was synthesized by the reaction of CuCl, P2Se5 and Se in a molar ratio of 1:1:1 at 500 C and structurally characterized by X-ray crystallography. The crystal belongs to orthorhombic, space group Pmn21 with cell parameters: a = 7.685(2), b = 6.656(1), c = 6.377(1) , V = 326.2(1) 3, Z = 2, Dc = 5.472 g/cm3, Mr = 537.43, F(000) = 476, m = 32.12 mm-1, R = 0.0642, wR = 0.1481 and S = 1.037. The 3-D structure can be regarded as constructed from the alternately stacking of [Cu(2)Se4] tetrahedral layers and Cu(1)PSe tetrahedral layers along the b direction, in which the Cu(2)Se layer is comprised of corner-sharing [Cu(2)Se4] tetrahedra along the a and c directions, and the Cu(1)PSe layer is consisted of alternately corner-sharing [Cu(1)Se4] tetrahedra and [PSe4] tetrahedra along the a and c directions.展开更多
The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the partic...The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the particles in the process of the isothermal treatment was also discussed.The results show that the microstructure of the as-cast alloy consists ofα-Mg solid solution, Mg5RE and Mg24RE5(Gd,Y,Nd)phase.After being extruded with an extrusion ratio of 14:1 at 380℃,the microstructure of Mg-Gd alloy changes from developed dendrites to near-equiaxed grains.The liquid volume fraction of the semisolid slurry gradually increases with elevating isothermal temperature or prolonging isothermal time during the partial remelting.To obtain an ideal semisolid slurry,the optimal process parameters for the Mg-Gd alloy should be 630℃for isothermal temperature and 30 min for the corresponding time,respectively,where the volume fraction of the liquid phase is 52%.展开更多
Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity ...Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity systems when the structural rigidity is modified. Numerical results are constructed using ANSYS software with triangular finite elements for both the fluid (2D acoustic elements) and the solid (plane stress) domains. These former results are compared to proposed analytical expressions, showing an alternative benchmark tool for the analyst. Very rigid wall structures imply in frequencies and mode shapes almost identical to those achieved for an acoustic cavity with Neumann boundary condition at the interface. In this case, the wall behaves as rigid and fluid-structure system mode shapes are similar to those achieved for the uncoupled reservoir case.展开更多
The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized suc...The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.展开更多
Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure,...Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure, phase transition and dielectric properties was investigated. The crystal structure and ferroelectric phase transition were studied by XRD (X-ray diffraction) and dielectric measurements. The complete solid solution of BKT-BT was observed for all compositions. In XRD results, all compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature. With increasing BT content, the separation between diffraction peaks corresponded to increasing tetragonality. The phase transition temperature of ferroelectric tetragonal-paraelectric cubic (Tc) decreased with increasing BT content. As the amount of BT concentration increased, the ceramic became denser, and almost no porosity was finally obtained.展开更多
Solid phase orientation of polymers is one of the most successful routes to enhancement of polymer properties.It unlocks the potential of molecular orientation for the achievement of a range of enhanced physical prope...Solid phase orientation of polymers is one of the most successful routes to enhancement of polymer properties.It unlocks the potential of molecular orientation for the achievement of a range of enhanced physical properties.We provide here an overview of techniques developed in our laboratories for structuring polymers by solid phase orientation processing routes,with a particular focus on die drawing,which have allowed control of significant enhancements of a single property or combinations of properties,including Young's modulus,strength,and density.These have led to notable commercial exploitations,and examples of load bearing low density materials and shape memory materials are discussed.展开更多
基金Project(51146010)supported by the National Natural Science Foundation of ChinaProject(S2011040003189)supported by the Doctoral Research Fund of Guangdong Natural Science Foundation,ChinaProject supported by the Fundation of Key Laboratory of Surface Functional Structure Manufacturing of Guangdong Higher Education Institutes,South China University of Technology
文摘A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer.
文摘Immiscible Cu-W alloy thin films were prepared using dual-target magnetron sputtering deposition process. The structure evolution of Cu-W thin films during preparation was investigated by X-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy. In the initial stage of dual-target magnetron sputtering deposition process, an amorphous phase formed; then it crystallized and the analogy spinodal structure formed due to the bombardment of the sputtered particles during sputtering deposition process, the surface structure of the film without the bombardment of the sputtered particles was the amorphous one, the distribution of the crystalline and amorphous phase showed layer structure. The solid solubility with the analogy spinodal structure was calculated using the Vegard law. For Cu-13.7%W (mole fraction) film, its structure was composed of Cu-ll%W solution, Cu-37%W solution and pure Cu; for Cu 14.3%W film, it was composed of Cu-15%W solution, Cu-38%W solution, and pure Cu; for Cu-18.1%W film, it was composed of Cu-19%W solution, Cu-36% W solution and pure Cu.
文摘The solid state morphology of the tri block copolymer PS b PCEMA b PtBA, which was synthesized by anionic polymerization with narrow molecular weight distribution, was in lamella structure from TEM micrographs. After being blended with polystyrene with the mass ratio of 1∶0 4, the morphology showed cylinder structure. With PS as continous phase, PCEMA and PtBA phases formed cylinders with PCEMA as outer layer. The nanofibres can be got and dispersed in good solvents of PS when the PCEMA phase was crosslinked. The t butyl group in PtBA phase can be cleavaged by reacting with TMSI, and nanofibres changed to nanotubes finally. It has the great potential applications, such as in the preparation of nanowires, template polymerization, nano reactor etc ..
文摘The role of structural design of nanosystems, i.e. systems with high density of surfaces, boundaries and interfaces greatly increases as material science rapidly develops in the direction of molecular and atomic assembly technology of materials and constructions. The processes occurring in interface layers determine the unique properties of nanosystems. The evolution of a substance in a boundary layer tends to a stationary state corresponding to external conditions. For micro(nano)-systems interfaces corresponding to a symmetry dictated energy extremum can be selected as states -attractors. To optimize structural design, forecasting and achievement of desirable characteristics, the processes of internal structural self-organization of a system should be in resonance with processes of controlling external influences (synergy resonance principle). This approach, together with earlier developed crystallochemical methods of searching for symmetry preferred interfaces of heteroepitaxy, allows one to carry out modeling generation and experimental selection of nanosystems with desirable properties and purposeful nanodesigning to create new materials, structures and devices. In view these tasks the discussion concentrates on: (1) Processes of special boundary texture formation in order to obtain high stable magnetic properties of permanent magnets on the basis of Sm-Co powders; (2) Processes of structural self-organization and boundary design upon Bi, Bi-Sb nanofilm formation with a big length of electron mean free path; (3) Creation of coherent solid-state heterojunctions of superionic conductor- an electronic conductor in order to conserve fast ionic transport and low activation energy of ion-movement in the crystal layer interface. Formation of such heterojunctions is of the key role in the creation of new types of devices with high frequency - capacitance characteristics and a necessary element for the future information technologies, namely, wireless networks of autonomous microsensors and microrobots.
基金Supported by the National Key Program for Developing Basic Sciences of China (No. G1999022103) and the National Natural Science Foundation of China (No. 20176059).
文摘This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent-up gas-solid flow. The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of structure parameters with solids concentration, showing the tendency for particles to aggregate to form clusters and for fluid to pass around clusters. The global drag coefficient is resolved into that for the dense phase, for the dilute phase and for the so-called inter-phase, all of which can be obtained from their respective phase-specific structure parameters. The computational results show that the drag coefficients of the different phases are quite different, and the global drag coefficient calculated from the EMMS approach is much lower than that from the correlation of Wen and Yu. The simulation results demonstrate that the EMMS approach can well describe the heterogeneous flow structure, and is very promising for incorporation into the two-fluid model or the discrete particle model as the closure law for drag coefficient.
基金the State Planning Organization of Turkey for the financial support
文摘Slurry processing experiments were performed with AlSi7Mg0.6 to identify the globularization mechanisms.The melt sample water quenched slightly above the liquidus point is predominantly dendritic while that cooled into the semi-solid temperature range internally via stirring the melt with a rotating cylindrical block of the alloy itself becomes fully globular.The globules are much smaller when internal cooling and stirring are employed longer to achieve higher solid fractions before casting.Coarse dendrite fragments of various sizes are revealed,in the case of stirring after an initial fraction of solid is first formed without the benefit of additional internal cooling.
基金Support by the National Natural Science Foundation of China under Grant No.10776022the National Key Laboratory Fund for Shock Wave and Detonation Physics Research of the China Academy of Engineering Physics and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20090181110080
文摘Calculations have been performed to investigate the pressure-induced solid-solid phase transitions and the mechanical stability for three zinc-blende II-VI semiconductor compounds: ZnS, ZnSe, ZnTe by ab initio plane-wave pseudopotential density functional theory (DFT). Using the generalized gradient approximation (GGA) for exchange and correlation in the scheme of Perdew-Wang 1991 (P Wgl ), the ground state properties and equation of state are obtained, which are well consistent with the experimental data available and other calculations. On the basis of the forth-order Birch-Murnaghan equation of states, the transition pressures Pt are determined through the analysis of enthalpy variation with pressure. A linear-response approach is used to calculate the frequencies of the phonon dispersion. Finally, by the calculations of phonon frequencies, some thermodynamic properties such as the vibrational contribution to the Helmholtz free energy (F), enthedpy (H), entropy (S), and the heat capacity (Cv ) are also successfully obtained.
基金This work was supported by the National Natural Science Foundation of China (20001007 20131020) Natural Science Foundation of the Chinese Academy of Sciences (KJCX2-H3) and Fujian province (2000F006)
文摘The title compound Ag3PSe4 was synthesized by the reaction of Ag powder, P2Se5 and Se in a molar ratio of 1:1:1 at 500 C and structurally characterized by X-ray crystallography. The crystal belongs to orthorhombic, space group Pmn21 with cell parameters: a = 7.689(4), b = 6.660(3), c = 6.379(4) , V = 326.7(3) 3, Z = 2, Dc = 6.816 g/cm3, Mr = 670.42, F(000) = 584, m = 31.302 mm-1, R = 0.0606, wR = 0.1289 and S = 1.012. The 3-D structure can be regarded as constructed from the stacking of puckered AgPSe honeycomb-like sheets along the c direction, in which the Ag, P and Se atoms are bonded to each other to form a chair-like six-membered ring, and the rings then build the sheets by sharing edges.
基金This work was supported by the National Natural Science Foundation of China (20001007 20131020) Natural Science Foundation of the Chinese Academy of Sciences (KJCX2-H3) and Fujian Province (2000F006)
文摘The title compound Cu3PSe4 was synthesized by the reaction of CuCl, P2Se5 and Se in a molar ratio of 1:1:1 at 500 C and structurally characterized by X-ray crystallography. The crystal belongs to orthorhombic, space group Pmn21 with cell parameters: a = 7.685(2), b = 6.656(1), c = 6.377(1) , V = 326.2(1) 3, Z = 2, Dc = 5.472 g/cm3, Mr = 537.43, F(000) = 476, m = 32.12 mm-1, R = 0.0642, wR = 0.1481 and S = 1.037. The 3-D structure can be regarded as constructed from the alternately stacking of [Cu(2)Se4] tetrahedral layers and Cu(1)PSe tetrahedral layers along the b direction, in which the Cu(2)Se layer is comprised of corner-sharing [Cu(2)Se4] tetrahedra along the a and c directions, and the Cu(1)PSe layer is consisted of alternately corner-sharing [Cu(1)Se4] tetrahedra and [PSe4] tetrahedra along the a and c directions.
基金Projects(2006BA104B04-1,2006BAE04B07-3)supported by the National Science and Technology supporting Program of ChinaProject(2007KZ05)supported by the Science and Technology Foundation of Changchun City,China+1 种基金Project supported by"985 Project"of Jilin University,ChinaProject supported by the Open Subject of State Key Laboratory of Rare Earth Resource Utilization(2008)
文摘The effects of semi-solid isothermal process parameters on the microstructure evolution of Mg-Gd rare earth alloy produced by strain-induced melt activation(SIMA)were investigated.The formation mechanism of the particles in the process of the isothermal treatment was also discussed.The results show that the microstructure of the as-cast alloy consists ofα-Mg solid solution, Mg5RE and Mg24RE5(Gd,Y,Nd)phase.After being extruded with an extrusion ratio of 14:1 at 380℃,the microstructure of Mg-Gd alloy changes from developed dendrites to near-equiaxed grains.The liquid volume fraction of the semisolid slurry gradually increases with elevating isothermal temperature or prolonging isothermal time during the partial remelting.To obtain an ideal semisolid slurry,the optimal process parameters for the Mg-Gd alloy should be 630℃for isothermal temperature and 30 min for the corresponding time,respectively,where the volume fraction of the liquid phase is 52%.
文摘Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity systems when the structural rigidity is modified. Numerical results are constructed using ANSYS software with triangular finite elements for both the fluid (2D acoustic elements) and the solid (plane stress) domains. These former results are compared to proposed analytical expressions, showing an alternative benchmark tool for the analyst. Very rigid wall structures imply in frequencies and mode shapes almost identical to those achieved for an acoustic cavity with Neumann boundary condition at the interface. In this case, the wall behaves as rigid and fluid-structure system mode shapes are similar to those achieved for the uncoupled reservoir case.
基金Project(10B054)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Program of Hunan Province,China
文摘The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.
文摘Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure, phase transition and dielectric properties was investigated. The crystal structure and ferroelectric phase transition were studied by XRD (X-ray diffraction) and dielectric measurements. The complete solid solution of BKT-BT was observed for all compositions. In XRD results, all compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature. With increasing BT content, the separation between diffraction peaks corresponded to increasing tetragonality. The phase transition temperature of ferroelectric tetragonal-paraelectric cubic (Tc) decreased with increasing BT content. As the amount of BT concentration increased, the ceramic became denser, and almost no porosity was finally obtained.
基金the support of the Engineering & Physical Sciences Research Council,the Technology Strategy Boardvarious industrial partners including Bridon International,Dow Building Products Inc and Smith & Nephew Ltd
文摘Solid phase orientation of polymers is one of the most successful routes to enhancement of polymer properties.It unlocks the potential of molecular orientation for the achievement of a range of enhanced physical properties.We provide here an overview of techniques developed in our laboratories for structuring polymers by solid phase orientation processing routes,with a particular focus on die drawing,which have allowed control of significant enhancements of a single property or combinations of properties,including Young's modulus,strength,and density.These have led to notable commercial exploitations,and examples of load bearing low density materials and shape memory materials are discussed.