A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the micros...A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the microstructure and mechanical properties were studied.The results show that the microstructure and phase constitution vary with sintering temperature.Sintering the milled powders at 1200 ℃ produces fully dense compact.Higher sintering temperature does not improve the densification evidently.The dominant phases are γ and α2 in the bulk alloys sintered at 1200 ℃.With higher sintering temperature,the fraction of α2 phase decreases and the microstructure changes from equiaxed near γ grain to near lamellar structure,together with a slight coarsening.The bulk alloy sintered at 1260 ℃ with refined and homogeneous near lamellar structure reveals the best overall mechanical properties.The compressional fracture stress and compression ratio are 2984 MPa and 41.5%,respectively,at room temperature.The tensile fracture stress and ductility are 527.5 MPa and 5.9%,respectively,at 800 ℃.展开更多
The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studie...The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studied, respectively. The microstructure evolution during partial remelting was studied at different temperatures for different time. The tensile mechanical properties of thixoformed components by the two routes at room temperature were examined. The results show that coalescence is dominant in the SSTT alloy and Ostwald ripening is dominant in the RAP alloy. Compared with the SSTT route, the RAP route can produce finer semi-solid microstructure under the similar isothermal holding condition. The microstructure of the RAP alloy is much more spheroidized compared with the SSTT alloy. Thixoforming for the ZK60 magnesium alloy produced by the SSTT and RAP route results in successful filling of the die, and the thixoforming process improves the mechanical properties of ZK60 magnesium alloy. The RAP alloy shows significantly advantageous mechanical properties over that of the SSTT alloy.展开更多
Al-6Zn-2.5Mg-1.8Cu alloy ingots were prepared by squeeze casting under different specific pressures,and the fresh ingot with best mechanical properties was solid hot extruded.With the increase of the specific pressure...Al-6Zn-2.5Mg-1.8Cu alloy ingots were prepared by squeeze casting under different specific pressures,and the fresh ingot with best mechanical properties was solid hot extruded.With the increase of the specific pressure from 0 to 250 MPa,the dendrites became round and small.Because the applied pressure increased the solid solubility of alloying elements,the number of MgZn2 phases decreased.When the specific pressure increased from 250 MPa to 350 MPa,the grain size increased.After solid hot extrusion,the a(Al) grains were refined obviously and the MgZn2 phases were uniformly dispersed in the microstructure.After solid hot extrusion,the ultimate tensile strength was 605.67 MPa and the elongation was 8.1%,which were improved about 32.22%and15.71%,respectively,compared with those of the metal mold casting alloy.The fracture modes of the billet prepared by the metal mold casting and by squeeze casting were intergranular and quasi-cleavage fractures,respectively,whereas,that of the solid hot extrusion was mainly dimple fracture.The refined crystalline strengthening was the main reason to improve the strength and elongation of alloy.展开更多
Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, ...Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.展开更多
Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.Hi...Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.High temperature deformation behavior and microstructure evolution of GH4037 alloy were investigated.The results indicated that flow stress decreased rapidly at semi-solid temperatures compared to that at solid temperatures.Besides,the flow stress continued to increase after reaching the initial peak stress at semi-solid temperatures when the strain rate was 1 s-1.With increasing the deformation temperature,the size of initial solid grains and recrystallized grains increased.At semi-solid temperatures,the grains were equiaxed,and liquid phase existed at the grain boundaries and inside the grains.Discontinuous dynamic recrystallization(DDRX) characterized by grain boundary bulging was the main nucleation mechanism for GH4037 alloy.展开更多
AM60B magnesium alloy was refined by MgCO3 and its microstmcturat evolution was investigated during partial remelting. The results indicate that MgCO3 is an effective grain refiner for AM60B alloy and can decrease the...AM60B magnesium alloy was refined by MgCO3 and its microstmcturat evolution was investigated during partial remelting. The results indicate that MgCO3 is an effective grain refiner for AM60B alloy and can decrease the grain size from 329 pm of the unrefined alloy to 69 μm. A semisolid microstructure with small and spheroidal primary particles can be obtained after being partially remelted. The microstructure evolution can be divided into four steps: the initial rapid coarsening, structure separation, spheroidization and final coarsening. Correspondingly, these four steps result from the phase transformations of β→α, α+β→L and α→L, α→L and two reverse reactions of α→L and L→α, respectively. One spheroidal primary particle in the semisolid microstmcture usually originates one dendrite in the as-cast microstructure. The variation of primary particle size with holding time does not obey the LSW law, Dt^3-Do^3=Kt, after the semisolid system is in its solid-liquid equilibrium state. Longer heating duration makes the primary particles more globular, but it makes their size larger at the same time.展开更多
With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting...With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.展开更多
The self-developed taper barrel rheomoulding (TBR) machine for light alloy semi-solid slurry preparation was introduced.The semi-solid slurry was obtained from the intense shearing turbulence of the alloy melt in the ...The self-developed taper barrel rheomoulding (TBR) machine for light alloy semi-solid slurry preparation was introduced.The semi-solid slurry was obtained from the intense shearing turbulence of the alloy melt in the cause of solidification, which was further caused by the relative rotation of the internal and external taper barrel whose surface contained wale and groove.The heat transmission model of TBR process, the flow rules and the shearing model of the alloy melt were deduced.Taking A365 as experimental material, the microstructure evolution rules under different slurry preparation processes were analyzed.The results show that decreasing the pouring temperature of A365 alloy melt properly or increasing the shearing rate helps to obtain ideal semi-solid microstructure with the primary particle size of about 70 μm and the shape factor of above 0.8.展开更多
The effects of solution treatment temperature and holding time on the microstructure and mechanical properties of extruded Al-6.02 wt.%Zn-1.94 wt.%Mg alloy were investigated by differential scanning calorimetry(DSC),o...The effects of solution treatment temperature and holding time on the microstructure and mechanical properties of extruded Al-6.02 wt.%Zn-1.94 wt.%Mg alloy were investigated by differential scanning calorimetry(DSC),optical microscopy(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD), and tensile test. The results showed that the optimum solution treatment process for the alloy was 470 ℃, 2 h. The tensile strength, yield strength,and elongation of the samples after the aging treatment at 120℃ for 24 h were 486 MPa, 431 MPa, and 14.8%,respectively. The alloy produced more copious recrystallization with the augment of solution temperature and the extension of holding time. While the second phase of η(MgZn_(2)), and T(AlZnMgCu) in the matrix was not fully re-dissolved under the treatment condition of lower temperature or shorter holding time. Interestingly, the Zr aggregation was observed in the samples treated at 510 ℃ for 2 h, which led to the growth of the second phase particles and the increase of their area fraction.展开更多
Sn-36%Ni peritectie alloys were directionally solidified at different growth rates under a constant temperature gradient (20 K/mm), the dependences of microstructural characteristic length scales on the growth rate ...Sn-36%Ni peritectie alloys were directionally solidified at different growth rates under a constant temperature gradient (20 K/mm), the dependences of microstructural characteristic length scales on the growth rate were investigated. Experimental results are presented, including primary and higher order dendrite arm spacings 21, 22, 23 and dendrite tip radius R of primary NisSn2 phase. Comparisons between the theoretical predictions and the experimental results show that, for the primary dendrites, 21=335.882v-0.21, which is in agreement with the Kurz-Fisher model; for the secondary dendrites, λ2=44.957v-0.277, which is consistent with the Bouchard-Kirkaldy model; for the tertiary dendrites, λ3=40.512v-0.274; for the dendrite tip radius, R=22.7v-0.36. The experimental results also show that the 21/22 changes greatly with increasing growth rate while the 21/23 has no significant change, indicating that tertiary dendrite arms have a more similar growth characteristics to primary dendrites compared with secondary dendrites. The λ1/R ranges from 2 to 2.3 with the increase of growth rate. Key words: Sn-Ni alloy; directional solidification; dendrite arm spacing; dendrite tip radius展开更多
Tuberculosis (TB) occurring after a closed bone fracture in the patient with no history of TB and no evidence of TB infection at the time of initial fracture is a rare entity. We report one such case of a 48-year-ol...Tuberculosis (TB) occurring after a closed bone fracture in the patient with no history of TB and no evidence of TB infection at the time of initial fracture is a rare entity. We report one such case of a 48-year-old female, who presented in the emergency department with an olecranon fracture which was open reduced and inter- nally fixed with tension band wiring. Patient presented in the outpatient department with serosanguineous discharge at 3 weeks after surgery. The discharge was sent for culture and sensitivity tests, and the patient was managed by anti- biotics and daily dressings. There was wound dehiscence and the underlying implant was exposed, which was removed at 12 weeks after surgery. Repeat debridements and dressings continued for 6 months, but the discharge from the wound site continued. X-rays of the elbow performed at 6 months raised the suspicion of TB, which was confirmed by Ziel-Neelsen staining and histopathological examination of the debrided tissue. Following the confirmation, patient was put on antitubercular drugs. The patient responded to anti- tubercular drug therapy (ATT), the purulent discharge from the wound ceased, and eventually the wound healed after 2 months of starting ATT.展开更多
基金Project(2011CB605500) supported by the National Basic Research Program of ChinaProject(FRF-MP-10-005B) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(50674037) supported by the National Natural Science Foundation of China
文摘A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the microstructure and mechanical properties were studied.The results show that the microstructure and phase constitution vary with sintering temperature.Sintering the milled powders at 1200 ℃ produces fully dense compact.Higher sintering temperature does not improve the densification evidently.The dominant phases are γ and α2 in the bulk alloys sintered at 1200 ℃.With higher sintering temperature,the fraction of α2 phase decreases and the microstructure changes from equiaxed near γ grain to near lamellar structure,together with a slight coarsening.The bulk alloy sintered at 1260 ℃ with refined and homogeneous near lamellar structure reveals the best overall mechanical properties.The compressional fracture stress and compression ratio are 2984 MPa and 41.5%,respectively,at room temperature.The tensile fracture stress and ductility are 527.5 MPa and 5.9%,respectively,at 800 ℃.
文摘The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studied, respectively. The microstructure evolution during partial remelting was studied at different temperatures for different time. The tensile mechanical properties of thixoformed components by the two routes at room temperature were examined. The results show that coalescence is dominant in the SSTT alloy and Ostwald ripening is dominant in the RAP alloy. Compared with the SSTT route, the RAP route can produce finer semi-solid microstructure under the similar isothermal holding condition. The microstructure of the RAP alloy is much more spheroidized compared with the SSTT alloy. Thixoforming for the ZK60 magnesium alloy produced by the SSTT and RAP route results in successful filling of the die, and the thixoforming process improves the mechanical properties of ZK60 magnesium alloy. The RAP alloy shows significantly advantageous mechanical properties over that of the SSTT alloy.
基金Project(50971092)supported by the National Natural Science of Foundation of ChinaProject(201202166)supported by the Natural Science Foundation of Education Department of Liaoning Province,China
文摘Al-6Zn-2.5Mg-1.8Cu alloy ingots were prepared by squeeze casting under different specific pressures,and the fresh ingot with best mechanical properties was solid hot extruded.With the increase of the specific pressure from 0 to 250 MPa,the dendrites became round and small.Because the applied pressure increased the solid solubility of alloying elements,the number of MgZn2 phases decreased.When the specific pressure increased from 250 MPa to 350 MPa,the grain size increased.After solid hot extrusion,the a(Al) grains were refined obviously and the MgZn2 phases were uniformly dispersed in the microstructure.After solid hot extrusion,the ultimate tensile strength was 605.67 MPa and the elongation was 8.1%,which were improved about 32.22%and15.71%,respectively,compared with those of the metal mold casting alloy.The fracture modes of the billet prepared by the metal mold casting and by squeeze casting were intergranular and quasi-cleavage fractures,respectively,whereas,that of the solid hot extrusion was mainly dimple fracture.The refined crystalline strengthening was the main reason to improve the strength and elongation of alloy.
基金Projects(51274057,51474057) supported by the National Natural Science Foundation of ChinaProject(2012AA03A508) supported by the High-tech Research and Development Program of China
文摘Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.
基金Project(51575127)supported by the National Natural Science Foundation of China
文摘Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.High temperature deformation behavior and microstructure evolution of GH4037 alloy were investigated.The results indicated that flow stress decreased rapidly at semi-solid temperatures compared to that at solid temperatures.Besides,the flow stress continued to increase after reaching the initial peak stress at semi-solid temperatures when the strain rate was 1 s-1.With increasing the deformation temperature,the size of initial solid grains and recrystallized grains increased.At semi-solid temperatures,the grains were equiaxed,and liquid phase existed at the grain boundaries and inside the grains.Discontinuous dynamic recrystallization(DDRX) characterized by grain boundary bulging was the main nucleation mechanism for GH4037 alloy.
基金Project(G2007CB613706) supported by the National Basic Research Program of China
文摘AM60B magnesium alloy was refined by MgCO3 and its microstmcturat evolution was investigated during partial remelting. The results indicate that MgCO3 is an effective grain refiner for AM60B alloy and can decrease the grain size from 329 pm of the unrefined alloy to 69 μm. A semisolid microstructure with small and spheroidal primary particles can be obtained after being partially remelted. The microstructure evolution can be divided into four steps: the initial rapid coarsening, structure separation, spheroidization and final coarsening. Correspondingly, these four steps result from the phase transformations of β→α, α+β→L and α→L, α→L and two reverse reactions of α→L and L→α, respectively. One spheroidal primary particle in the semisolid microstmcture usually originates one dendrite in the as-cast microstructure. The variation of primary particle size with holding time does not obey the LSW law, Dt^3-Do^3=Kt, after the semisolid system is in its solid-liquid equilibrium state. Longer heating duration makes the primary particles more globular, but it makes their size larger at the same time.
基金Project(2010CB731700) supported by the National Basic Research Program of China
文摘With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.
基金Project(2006CB605203) supported by the National Basic Research Program of China
文摘The self-developed taper barrel rheomoulding (TBR) machine for light alloy semi-solid slurry preparation was introduced.The semi-solid slurry was obtained from the intense shearing turbulence of the alloy melt in the cause of solidification, which was further caused by the relative rotation of the internal and external taper barrel whose surface contained wale and groove.The heat transmission model of TBR process, the flow rules and the shearing model of the alloy melt were deduced.Taking A365 as experimental material, the microstructure evolution rules under different slurry preparation processes were analyzed.The results show that decreasing the pouring temperature of A365 alloy melt properly or increasing the shearing rate helps to obtain ideal semi-solid microstructure with the primary particle size of about 70 μm and the shape factor of above 0.8.
基金Project(U1837207) supported by the National Natural Science Foundation of China。
文摘The effects of solution treatment temperature and holding time on the microstructure and mechanical properties of extruded Al-6.02 wt.%Zn-1.94 wt.%Mg alloy were investigated by differential scanning calorimetry(DSC),optical microscopy(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD), and tensile test. The results showed that the optimum solution treatment process for the alloy was 470 ℃, 2 h. The tensile strength, yield strength,and elongation of the samples after the aging treatment at 120℃ for 24 h were 486 MPa, 431 MPa, and 14.8%,respectively. The alloy produced more copious recrystallization with the augment of solution temperature and the extension of holding time. While the second phase of η(MgZn_(2)), and T(AlZnMgCu) in the matrix was not fully re-dissolved under the treatment condition of lower temperature or shorter holding time. Interestingly, the Zr aggregation was observed in the samples treated at 510 ℃ for 2 h, which led to the growth of the second phase particles and the increase of their area fraction.
基金Projects (51071062, 51271068, 51274077) supported by the National Natural Science Foundation of China Project (2011 -P03) supported by Open Fund of State Key Laboratory of Mold and Die Technology of Huazhong University of Science and Technology, China+1 种基金 Project (HIT. NSRIF. 2013002) supported by the Fundamental Research Funds for the Central Universities, China Project (2011CB610406) supported by the National Basic Research Program of China
文摘Sn-36%Ni peritectie alloys were directionally solidified at different growth rates under a constant temperature gradient (20 K/mm), the dependences of microstructural characteristic length scales on the growth rate were investigated. Experimental results are presented, including primary and higher order dendrite arm spacings 21, 22, 23 and dendrite tip radius R of primary NisSn2 phase. Comparisons between the theoretical predictions and the experimental results show that, for the primary dendrites, 21=335.882v-0.21, which is in agreement with the Kurz-Fisher model; for the secondary dendrites, λ2=44.957v-0.277, which is consistent with the Bouchard-Kirkaldy model; for the tertiary dendrites, λ3=40.512v-0.274; for the dendrite tip radius, R=22.7v-0.36. The experimental results also show that the 21/22 changes greatly with increasing growth rate while the 21/23 has no significant change, indicating that tertiary dendrite arms have a more similar growth characteristics to primary dendrites compared with secondary dendrites. The λ1/R ranges from 2 to 2.3 with the increase of growth rate. Key words: Sn-Ni alloy; directional solidification; dendrite arm spacing; dendrite tip radius
文摘Tuberculosis (TB) occurring after a closed bone fracture in the patient with no history of TB and no evidence of TB infection at the time of initial fracture is a rare entity. We report one such case of a 48-year-old female, who presented in the emergency department with an olecranon fracture which was open reduced and inter- nally fixed with tension band wiring. Patient presented in the outpatient department with serosanguineous discharge at 3 weeks after surgery. The discharge was sent for culture and sensitivity tests, and the patient was managed by anti- biotics and daily dressings. There was wound dehiscence and the underlying implant was exposed, which was removed at 12 weeks after surgery. Repeat debridements and dressings continued for 6 months, but the discharge from the wound site continued. X-rays of the elbow performed at 6 months raised the suspicion of TB, which was confirmed by Ziel-Neelsen staining and histopathological examination of the debrided tissue. Following the confirmation, patient was put on antitubercular drugs. The patient responded to anti- tubercular drug therapy (ATT), the purulent discharge from the wound ceased, and eventually the wound healed after 2 months of starting ATT.