Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according ...Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according to the method described in the Chinese national standard GB/T 5009.17-1996. The experimental stud)' was made using rice husk ash samples of different types and at different temperatures. The results show that the carbon content of the rice husk ash was 3.81% after treatment for 1 h at 600℃, the mercury removal rate was above 95%, but the adsorption efficiency was below 20% after incineration for 4 h. The adsorption efficiency of rice husk ash treated by H202 or HCI was very low, while the adsorption efficiency was very high when rice husk ash was pyrolytically carbonized or basified by NaOH; the adsorption efficiency ofbasified rice husk ash sample was up to 98.5%. The carbon content of rice husk ash could affect the adsorption of mercury to some degree, but the internal structure of the rice husk ash samples was a more important factor for adsorption.展开更多
文摘Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according to the method described in the Chinese national standard GB/T 5009.17-1996. The experimental stud)' was made using rice husk ash samples of different types and at different temperatures. The results show that the carbon content of the rice husk ash was 3.81% after treatment for 1 h at 600℃, the mercury removal rate was above 95%, but the adsorption efficiency was below 20% after incineration for 4 h. The adsorption efficiency of rice husk ash treated by H202 or HCI was very low, while the adsorption efficiency was very high when rice husk ash was pyrolytically carbonized or basified by NaOH; the adsorption efficiency ofbasified rice husk ash sample was up to 98.5%. The carbon content of rice husk ash could affect the adsorption of mercury to some degree, but the internal structure of the rice husk ash samples was a more important factor for adsorption.