Financial support from National Science Foundation for Distinguished Youth (Grant No.70925006), National Natural Sciences Fund Program (Grant No.71103059), Humanities and Social Sciences Youth Program of the Minis...Financial support from National Science Foundation for Distinguished Youth (Grant No.70925006), National Natural Sciences Fund Program (Grant No.71103059), Humanities and Social Sciences Youth Program of the Ministry of Education (Grant No. 10YJC7902930), is gratefully acknowledged. Authors highly appreciate the comments of anonymous reviewers and take sole responsibility for this paper.展开更多
The use of local materials is an important part of sustainability for the concrete industry. The declining availability of aggregate resources in many areas has the potential to result in the use of alternative aggreg...The use of local materials is an important part of sustainability for the concrete industry. The declining availability of aggregate resources in many areas has the potential to result in the use of alternative aggregates of lower quality, which can require higher cementitious materials contents, or the use of aggregates shipped from greater distance. In some markets, manufactured sands are replacing natural sands, which can adversely impact the rheology of cementitious mixtures. The use of certain chemical admixtures has been found to often minimize the need to increase cement and water contents in order to overcome the loss of workability that can accompany aggregate sources which feature flat, elongated, angular, and rough particles. In this study, a wide range of natural and manufactured sands were characterized for gradation, mineralogy, shape, texture, and cleanliness, and also evaluated for their effect on mortar rheology with and without a VMA (viscosity modifying agent) type chemical admixture. Use of the VMA is shown to mitigate the rheological effect of certain sands, and in some cases can allow for optimizing the mixture to lower paste contents. In the case of PCP (polycarboxylate)-based superplasticizers, attention is drawn to the increased dose required to achieve target workability versus superplasticizers based on NSFC (naphthalene sulfonate condensate) when swellable clays are present in the very fine fraction of certain aggregate sources. The use of sands with higher fines contents are also shown to increase the workability provided the fines are of appropriate quality.展开更多
The North China Craton (NCC) is a classical example of ancient destroyed cratons.Since the initiation of the North China Craton Destruction Project by the National Natural Science Foundation of China,numerous studies ...The North China Craton (NCC) is a classical example of ancient destroyed cratons.Since the initiation of the North China Craton Destruction Project by the National Natural Science Foundation of China,numerous studies have been conducted on the timing,scale,and mechanism of this destruction through combined interdisciplinary research.Available data suggest that the destruction occurred mainly in the eastern NCC,whereas the western NCC was only locally modified.The sedimentation,magmatic activities and structural deformation after cratonization at ~1.8 Ga indicate that the NCC destruction took place in the Mesozoic with a peak age of ca 125 Ma.A global comparison suggests that most cratons on Earth are not destroyed,although they have commonly experienced lithospheric thinning;destruction is likely to occur only when the craton has been disturbed by oceanic subduction.The destruction of the NCC was coincident with globally active plate tectonics and high mantle temperatures during the Cretaceous.The subducted Pacific slab destabilized mantle convection beneath the eastern NCC,which resulted in cratonic destruction in the eastern NCC.Delamination and/or thermal-mechanical-chemical erosion resulted from the destabilization of mantle convection.展开更多
In 2014, the National Natural Science Foundation of China (NSFC) approved the Jinping Underground Nuclear Astrophysics laboratory (JUNA) project, which aims at direct cross-section measurements of four key stellar...In 2014, the National Natural Science Foundation of China (NSFC) approved the Jinping Underground Nuclear Astrophysics laboratory (JUNA) project, which aims at direct cross-section measurements of four key stellar nuclear reactions right down to the Gamow windows. In order to solve the observed fluorine overabundances in Asymptotic Giant Branch (AGB) stars, measuring the key 19F(p,a)16O reaction at effective burning energies (i.e., at Gamow window) is established as one of the scientific research sub-projects. The present paper describes this sub-project in details, including motivation, status, experimental setup, yield and background estimation, aboveground test, as well as other relevant reactions.展开更多
Heart failure is a major public health problem worldwide. Despite advances in the therapy and care of heart failure, morbidity and mortality remain persistently high. Recent years have witnessed major breakthroughs in...Heart failure is a major public health problem worldwide. Despite advances in the therapy and care of heart failure, morbidity and mortality remain persistently high. Recent years have witnessed major breakthroughs in the investigations of pathogenesis, prevention, and treatment of heart failure in China. It is noteworthy that the continuing and growing support from funding agencies in China including the National Natural Science Foundation of China has yielded substantial effects on the basic and clinical research in heart failure in the last decade. In this review, we provide an update on the current status of heart failure research, both basic and translational/clinical, in China, including funding and publications. We also discuss the future challenges and possible strategies in improving our understanding and management of heart failure in China.展开更多
Oil and gas have long been regarded as key elements for any industrialized country.China's economy and social security are largely dependent on oil and gas exploration and development.Nowadays,a great deal of atte...Oil and gas have long been regarded as key elements for any industrialized country.China's economy and social security are largely dependent on oil and gas exploration and development.Nowadays,a great deal of attention has been paid to various ways of efficiently developing oil and gas reserves.This paper presents an overview of research and applications of novel jet techniques in well-drilling,well-completion and fracturing.Supported by the National Natural Science Foundation of China,through years of effort,significant achievements have been made in this area.Not only has the systematic theory of novel jetting been established,but also its application has been proved practical in petroleum engineering.This paper focuses on the topics of the self-resonating cavitating jet,the abrasive water jet,and the supercritical CO_2 jet,in respect of theories,applications and prospects.展开更多
supported by the Taishan Scholar Construction Engineering by Shandong Government the National Natural Science Foundation of China under Grant Nos.61120106011 and 61203029
基金Acknowledgment: This work was supported by the National Natural Science Foundation of China (No.21076204) and the Basic Research Foundation of Xi'an University of Architecture and Technology (No.JC1107).
文摘Acknowledgment: This work was supported by the National Natural Science Foundation of China (No.21076204) and the Basic Research Foundation
基金Financial support from National Science Foundation for Distinguished Youth (Grant No.70925006), National Natural Sciences Fund Program (Grant No.71103059), Humanities and Social Sciences Youth Program of the Ministry of Education (Grant No. 10YJC7902930), is gratefully acknowledged. Authors highly appreciate the comments of anonymous reviewers and take sole responsibility for this paper.
文摘Financial support from National Science Foundation for Distinguished Youth (Grant No.70925006), National Natural Sciences Fund Program (Grant No.71103059), Humanities and Social Sciences Youth Program of the Ministry of Education (Grant No. 10YJC7902930), is gratefully acknowledged. Authors highly appreciate the comments of anonymous reviewers and take sole responsibility for this paper.
文摘The use of local materials is an important part of sustainability for the concrete industry. The declining availability of aggregate resources in many areas has the potential to result in the use of alternative aggregates of lower quality, which can require higher cementitious materials contents, or the use of aggregates shipped from greater distance. In some markets, manufactured sands are replacing natural sands, which can adversely impact the rheology of cementitious mixtures. The use of certain chemical admixtures has been found to often minimize the need to increase cement and water contents in order to overcome the loss of workability that can accompany aggregate sources which feature flat, elongated, angular, and rough particles. In this study, a wide range of natural and manufactured sands were characterized for gradation, mineralogy, shape, texture, and cleanliness, and also evaluated for their effect on mortar rheology with and without a VMA (viscosity modifying agent) type chemical admixture. Use of the VMA is shown to mitigate the rheological effect of certain sands, and in some cases can allow for optimizing the mixture to lower paste contents. In the case of PCP (polycarboxylate)-based superplasticizers, attention is drawn to the increased dose required to achieve target workability versus superplasticizers based on NSFC (naphthalene sulfonate condensate) when swellable clays are present in the very fine fraction of certain aggregate sources. The use of sands with higher fines contents are also shown to increase the workability provided the fines are of appropriate quality.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90814000,90814002)
文摘The North China Craton (NCC) is a classical example of ancient destroyed cratons.Since the initiation of the North China Craton Destruction Project by the National Natural Science Foundation of China,numerous studies have been conducted on the timing,scale,and mechanism of this destruction through combined interdisciplinary research.Available data suggest that the destruction occurred mainly in the eastern NCC,whereas the western NCC was only locally modified.The sedimentation,magmatic activities and structural deformation after cratonization at ~1.8 Ga indicate that the NCC destruction took place in the Mesozoic with a peak age of ca 125 Ma.A global comparison suggests that most cratons on Earth are not destroyed,although they have commonly experienced lithospheric thinning;destruction is likely to occur only when the craton has been disturbed by oceanic subduction.The destruction of the NCC was coincident with globally active plate tectonics and high mantle temperatures during the Cretaceous.The subducted Pacific slab destabilized mantle convection beneath the eastern NCC,which resulted in cratonic destruction in the eastern NCC.Delamination and/or thermal-mechanical-chemical erosion resulted from the destabilization of mantle convection.
基金supported by the National Natural Science Foundation of China(Grant Nos.114905621149056011135005 and 11321064)
文摘In 2014, the National Natural Science Foundation of China (NSFC) approved the Jinping Underground Nuclear Astrophysics laboratory (JUNA) project, which aims at direct cross-section measurements of four key stellar nuclear reactions right down to the Gamow windows. In order to solve the observed fluorine overabundances in Asymptotic Giant Branch (AGB) stars, measuring the key 19F(p,a)16O reaction at effective burning energies (i.e., at Gamow window) is established as one of the scientific research sub-projects. The present paper describes this sub-project in details, including motivation, status, experimental setup, yield and background estimation, aboveground test, as well as other relevant reactions.
文摘Heart failure is a major public health problem worldwide. Despite advances in the therapy and care of heart failure, morbidity and mortality remain persistently high. Recent years have witnessed major breakthroughs in the investigations of pathogenesis, prevention, and treatment of heart failure in China. It is noteworthy that the continuing and growing support from funding agencies in China including the National Natural Science Foundation of China has yielded substantial effects on the basic and clinical research in heart failure in the last decade. In this review, we provide an update on the current status of heart failure research, both basic and translational/clinical, in China, including funding and publications. We also discuss the future challenges and possible strategies in improving our understanding and management of heart failure in China.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51221003,50125413,50774089 and 90410007)NSFC Major International Joint Research Program(Grant No.51210006)
文摘Oil and gas have long been regarded as key elements for any industrialized country.China's economy and social security are largely dependent on oil and gas exploration and development.Nowadays,a great deal of attention has been paid to various ways of efficiently developing oil and gas reserves.This paper presents an overview of research and applications of novel jet techniques in well-drilling,well-completion and fracturing.Supported by the National Natural Science Foundation of China,through years of effort,significant achievements have been made in this area.Not only has the systematic theory of novel jetting been established,but also its application has been proved practical in petroleum engineering.This paper focuses on the topics of the self-resonating cavitating jet,the abrasive water jet,and the supercritical CO_2 jet,in respect of theories,applications and prospects.
基金supported by the National Natural Science Foundation of China under Grant Nos.71125005,70871108,and 70810107020Outstanding Talents Funds of Organization Department,Beijing Committee of CPC
文摘supported by the Taishan Scholar Construction Engineering by Shandong Government the National Natural Science Foundation of China under Grant Nos.61120106011 and 61203029