A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China...A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.展开更多
This paper analyzes the corn production cost in China, the U.S. and Brazil from 1997 to 2014. According to the results,(1) corn production cost in China is the highest among these three countries;(2) the rapid gro...This paper analyzes the corn production cost in China, the U.S. and Brazil from 1997 to 2014. According to the results,(1) corn production cost in China is the highest among these three countries;(2) the rapid growth of labor cost and land cost is the major factor that promotes the increase of total corn production cost in China;(3) the level of agricultural mechanization in China has been gradually improving, and the gap between agricultural mechanization levels in China and other two countries is constantly narrowing;(4) differing from the U.S. and Brazil,China exhibits a "high input, low output" agricultural production mode. Based on the above analyses, corresponding suggestions have been presented to reduce corn production cost in China.展开更多
The North China Plain,where summer corn(Zea mays L.)and winter wheat(Triticum aestivum L.)are the major crops grown,is a major agricultural area in China.Permeable soils make the region susceptible to groundwater poll...The North China Plain,where summer corn(Zea mays L.)and winter wheat(Triticum aestivum L.)are the major crops grown,is a major agricultural area in China.Permeable soils make the region susceptible to groundwater pollution by NO_3-N,which is applied to fields in large amounts of more than 400 kg NO_3-N ha^(-1)as fertilizer.A field experiment was established in 2002 to examine the relationship among N fertilization rate,soil NO_3-N,and NO_3-N groundwater contamination.Two adjacent fields were fertilized with local farmers' N fertilization rate(LN)and double the normal application rate(HN),respectively,and managed under otherwise identical conditions.The fields were under a traditional summer corn/winter wheat rotation.Over a 22-month period,we monitored NO_3-N concentrations in both bulk soil and soil pore water in 20-40 cm increments up to 180 cm depth.We also monitored NO_3-N concentrations in groundwater and the depth of the groundwater table.No significant differences in soil NO_3-N were observed between the LN and HN treatment.We identified NO_3-N plumes moving downward through the soil profile.The HN treatment resulted in significantly higher groundwater NO_3-N,relative to the LN treatment,with groundwater NO_3-N consistently exceeding the maximum safe level of 10 mg L^(-1),but groundwater NO_3-N above the maximum safe level was also observed in the LN treatment after heavy rain.Heavy rain in June,July,and August 2003 caused increased NO_3-N leaching through the soil and elevated NO_3-N concentrations in the groundwater.Concurrent rise of the groundwater table into NO_3-N- rich soil layers also contributed to the increased NO_3-N concentrations in the groundwater.Our results indicate that under conditions of average rainfall,soil NO_3-N was accumulated in the soil profile.The subsequent significantly higher- than-average rainfalls continuously flushed the soil NO_3-N into deeper layers and raised the groundwater table,which caused continuous groundwater contamination with NO_3-N.The results suggest that under common farming practices in the North China Plain,groundwater contamination with NO_3-N was likely,especially during heavy rainfalls,and the degree of groundwater contamination appeared to be proportional to the N application rates.Decreasing fertilization rates, splitting fertilizer inputs,and optimizing irrigation scheduling had potential to reduce groundwater NO_3-N contamination.展开更多
Soil organic carbon (SOC) and its relationship with landscape attributes are important for evaluating current regional, continental, and global carbon stores. Data of SOC in surface soils (0–20 cm) of four main soils...Soil organic carbon (SOC) and its relationship with landscape attributes are important for evaluating current regional, continental, and global carbon stores. Data of SOC in surface soils (0–20 cm) of four main soils, Cambisol, Arenosol, Phaeozem, and Chernozem, were collected at 451 locations in Nongan County under maize monoculture in the Song-Nen Plain, Northeast China. The spatial characteristics of soil organic carbon were studied, using geographic information systems (GIS) and geostatistics. Effects of other soil physical and chemical properties, elevation, slope, and soil type on SOC were explored. SOC concentrations followed a normal distribution, with an arithmetic mean of 14.91 g kg-1 . The experimental variogram of SOC was fitted with a spherical model. There were significant correlations between soil organic carbon and bulk density (r =-0.374**), pH (r = 0.549**), total nitrogen (r = 0.781**), extractable phosphorus (r =-0.109*), exchangeable potassium (r = 0.565**), and cation exchange capacity (r = 0.313**). Generally, lower SOC concentrations were significantly associated with high elevation (r =-0.429**). Soil organic carbon was significantly negatively correlated with slope gradient (r =-0.195**). Samples of the Cambisol statistically had the highest SOC concentrations, and samples of the Arenosol had the lowest SOC value.展开更多
Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil org...Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.展开更多
Southern rice black-streaked dwarf virus (SRBSDV) is a novel Fijivirus prevalent in rice in southern and central China,and northern Vietnam. Its genome has 10 segments of double-stranded RNA named S1 to S10 according ...Southern rice black-streaked dwarf virus (SRBSDV) is a novel Fijivirus prevalent in rice in southern and central China,and northern Vietnam. Its genome has 10 segments of double-stranded RNA named S1 to S10 according to their size. An isolate of SRBSDV,JNi4,was obtained from naturally infected maize plants from Ji'ning,Shandong province,in the 2008 maize season. Segments S7 to S10 of JNi4 share nucleotide identities of 72.6%-73.1%,72.3%-73%,73.9%-74.5% and 77.3%-79%,respectively,with corresponding segments of Rice black-streaked dwarf virus isolates,and identities of 99.7%,99.1%-99.7%,98.9%-99.5%,and 98.6%-99.2% with those of SRBSDV isolates HN and GD. JNi4 forms a separate branch with GD and HN in the phylogenetic trees constructed with genomic sequences of S7 to S10. These results confirm the proposed taxonomic status of SRBSDV as a distinct species of the genus Fijivirus and indicate that JNi4 is an isolate of SRBSDV. Shandong is so far the northernmost region where SRBSDV is found in China.展开更多
The cultivation of genetically modified (GM) plants requires the reduction of an unwanted spread of genes (biological confinement). Cytoplasmic male sterility (CMS) inhibits the development of functional pollen,...The cultivation of genetically modified (GM) plants requires the reduction of an unwanted spread of genes (biological confinement). Cytoplasmic male sterility (CMS) inhibits the development of functional pollen, but nuclear restorer (RJ) genes and environmental impacts can restore the fertility. The aim of this study was to verify whether CMS in maize hybrids is a reliable confinement method for the prospective cultivation of GM maize in Germany. Two-year field experiments in three different environments were conducted with three CMS maize hybrids which vary in the CMS stability, one conventional maize variety (all yellow kernels) and white maize as pollen recipient. Tassel characteristics, pollen vitality and cross-pollination rates were investigated. The CMS stability was dependent on the genotype and the specific weather conditions per year and location. In all maize hybrids CMS was unstable. One CMS maize hybrid showed a high level of CMS stability and very low cross-pollination rates in any case (〈 1%). The two other CMS maize hybrids developed more fluctuant and fertile tassels with few or many pollen, respectively. Compared with a conventional and fully fertile maize variety, cross-pollination of all CMS maize hybrids was strongly reduced (84%-99%). In conclusion, the CMS trait can be proposed as a useful biological confinement method to reduce pollen-mediated gene flow from GM maize.展开更多
Lepidopteran stem borers are the most damaging pests of maize in Sub-Saharan Africa. Despite the growing importance of maize in the forest zone of Democratic Republic of Congo, no data is available regarding stem bore...Lepidopteran stem borers are the most damaging pests of maize in Sub-Saharan Africa. Despite the growing importance of maize in the forest zone of Democratic Republic of Congo, no data is available regarding stem borer pest species present and their relative importance. It is thus important to gather information likely to guide future research in this area. This study was undertaken to catalogue stem borer pest species identity and assess their relative infestation levels on maize. Surveys were carried out in wild and cultivated habitats in Kisangani. Five species were collected on maize, i.e., Sesamia calamistis Hampson (1910), Eldana saccharina Walker (1865), Busseola fusca Fuller (1901), Chilo sp. Strand (1913), and Mussidia nigrivenella Ragonot (1888). In the wild habitats, Poenoma serrata Hampson, B. fusca and S. calamistis were collected on Pennisetum purpureum whereas Chilo sp. was collected on Panicum maximum. Our results suggest that P. maximum might affect the population dynamics of Chilo sp. whereas P. purpureum is expected not to influence the population dynamics of other stem borers owing to its scarcity in the interior of the forest.展开更多
Competition for solar radiation between plants grown in multi-species cropping systems can severely limit crop production of individual species within that system. There are various approaches for modeling light inter...Competition for solar radiation between plants grown in multi-species cropping systems can severely limit crop production of individual species within that system. There are various approaches for modeling light interception within mixed-cropping and row or strip intercropping systems. To extend the knowledge about model behavior and different model approaches under interspecific competition conditions, the Agricultural Production Systems Simulator (APSIM) was evaluated and calibrated for field experiments previously described and simulated by the Decision Support System for Agrotechnology Transfer (DSSAT). Initially the APSIM plant model was successfully modified to simulate wheat, maize and fieldpea monocultures in the European agro-ecological zone. Once calibrated, the APSIM model was then used to simulate a strip relay intercropping maize/wheat and maize/fieldpea system. In DSSAT, a shading algorithm was introduced to modify the daily weather input in order to take competition for solar radiation into account. In contrast, APSIM simulates interspecific competition using a modified Beer's law for multi-component canopy conditions. After a re-evaluation of the model regarding a minimum change of crop coefficients and variables, APSIM was able to simulate dry matter and grain yield of German maize, wheat and fieldpea varieties adequately. However, APSIM is a point-based model, and many of the processes that influence strip cropping cannot be accommodated by adjusting Beer's Law alone. So far none of the tested frameworks successfully modeled strip or relay intercropping. The processes governing growth in the numerous and very diversifying intercropping systems are complex and at this point in time have not been captured in sufficient detail.展开更多
Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of...Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of tectonic settings, the strike and scale of causative faults, focal mechanism solutions, fault rupture process and attenuation relationship in Western China, as well as local site effects. The results are as follows: (1) The major axis of shaking intensity distribution is directed NW-SE, parallel to the Yushu fault; (2) The meizoseismal area reaches an intensity IX and covers 300km^2; (3) The intensity IX area is mainly distributed in the area 40km southeast and 15km northwest of the epicenter along the causative fault; (4) Due to local soil conditions, the northwestern part of the area with intensity IX on bedrock shows an intensity Ⅷ when converting from the bedrock to the soil; (5) Areas with intensity Ⅷ, VII, VI measure 3,000km^2, 8,000km^2, and 24,000km^2, respectively.展开更多
Extreme weather and climate events are likely to cause disastrous consequences for agriculture and food security. This study investigated the impacts of drought in year 2012 on corn yield in the United States Corn Bel...Extreme weather and climate events are likely to cause disastrous consequences for agriculture and food security. This study investigated the impacts of drought in year 2012 on corn yield in the United States Corn Belt by integrating county-level crop yield data from the USDA NASS Quick Stats database and precipitation data from the NCDC GHCN-Daily database. It is found that precipitation over an 8-week period in corn growth stages is critical for corn yield, the logarithm of precipitation during the period explained 55% of corn yield variation. The results indicated the importance of water supply in corn silking stage, and provided an approach to assess the impacts of drought on corn yield quantitatively.展开更多
Maize-rice cropping systems are expanding in Bangladesh. Hybrid maize has increasing demand and value, particularly for poultry feed, while rice remains the traditional dominant starch staple food. Bangladesh maize yi...Maize-rice cropping systems are expanding in Bangladesh. Hybrid maize has increasing demand and value, particularly for poultry feed, while rice remains the traditional dominant starch staple food. Bangladesh maize yields (with average farm yields around 5.7 t·ha^-1) are among the highest found in Asia. Cool winter (Rabi) season maize followed by T. Aman (monsoon) rice is the major cropping system; however it is now becoming diversified with many other crops including potato. Financially, hybrid maize is far more profitable than boro (irrigated) rice, wheat, or most other competing winter season Rabi crops. Although maize is relatively problem-free in Bangladesh, some constraints are intensifying with increased concern over input supply and soil-related environmental sustainability. An array of new technologies for sustainable intensive maize production systems is emerging in Bangladesh and some are being promoted and adopted. Continued sustainability of hybrid maize production in Bangladesh depends on optimization of planting time, quality seed of appropriate hybrids, balanced use of nutrient inputs along with soil fertility conservation and other management, for which further research would be high priority.展开更多
Evapotranspiration (ETc) is an important quantity for hydrological cycle. This study shows evapotranspiration, the ratio of evaporation to evapotranspiration (E/ETc) of winter wheat and maize in north China. Sever...Evapotranspiration (ETc) is an important quantity for hydrological cycle. This study shows evapotranspiration, the ratio of evaporation to evapotranspiration (E/ETc) of winter wheat and maize in north China. Several relationships, namely, E/ET0 and soil surface moisture, E/ET0 and leaf area index (LAI), are also analyzed. The average seasonal ETc values for winter wheat, maize (2008) and maize (2009) are 431.21,456.3 and 341.4mm. The value of E/ET0 varied from 1 at initial growth stage to 0.295 at the later growth for winter wheat, and from 1 to 0.492, from 1 to 0.566 for maize (2008) and maize (2009). The relationship between E/ET0 and surface soil water content, and E/ET0 and LAI are fitted to a quadratic parabola equation with significant correlation coefficients, respectively, for wheat and maize. These results should help the precise planning and efficient management of irrigation for these crops in this region.展开更多
Before farmers can benefit from new improved maize varieties with novel genetic information, new maize varieties have to undergo performance testing, registration and approval. The registration procedures require that...Before farmers can benefit from new improved maize varieties with novel genetic information, new maize varieties have to undergo performance testing, registration and approval. The registration procedures require that new maize varieties must pass the tests for value for cultivation and use (VCU) and standardized tests for distinctness, uniformity and stability (DUS). To meet the minimum requirements for variety release, public and private sector maize breeding programs routinely assemble breeding nurseries and evaluate variety performance in National and Regional Performance Trials (NRPT) with the objective of generating important agronomic data to identify the best maize varieties for release. In spite of intensive variety evaluation in regional and national trials, only few maize varieties have been registered and released annually in sub-Saharan Africa (SSA) denying farmers access to new improved varieties. The purpose of this study was to identify constraints hampering the registration and release of elite maize gennplasm and make recommends on how to quicken the deployment of elite germplasm to smallholders' farmers. A survey was conducted on the varietal testing and release systems in 14 selected countries (Angola, Benin, Ethiopia, Malawi, Ghana, Mali, Mozambique, Nigeria, Tanzania, Kenya, South Africa, Uganda, Zambia, and Zimbabwe) in SSA. The results from the study show that regulations on variety testing and release procedures in the various countries are overlapping and rigid hindering the deployment and commercialization of new improved maize germplasm. The study also showed that varietal release rates fluctuated between countries with South Africa having the highest number of varietal release rates per year and some countries failing to release a single variety per year.展开更多
Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of...Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L^-1, HN) and low N (0.04 mmol L^-1, LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGRroot), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.展开更多
Sustainable potassium (K) management at different soil sites requires understanding the relationships between crop productivity and long-term K fertilizations on a regional or national scale. We analyzed responses o...Sustainable potassium (K) management at different soil sites requires understanding the relationships between crop productivity and long-term K fertilizations on a regional or national scale. We analyzed responses of grain yield of wheat (Triticum aestivurn L.) and maize (Zea mays L.), K efficiency, and partial balance (difference between K input through fertilizer and K output in the aboveground biomass) during 15- (1990-2005) or 18-year (1990-2008) K fertilizations at five distinctive agroecologicai zones across China. Compared to the inorganic nitrogen (N) and phosphorus (P) fertilization, the inorganic NPK fertilization significantly increased grain yields of wheat (21%) and maize (16% 72%) at Qiyang and Changping, where soils have low exchangeable and non-exchangeable K contents, but not at Uriimqi, Yangling and Zhengzhou, where soils have a high exchangeable and non-exchangeable K and/or low N/K ratio in crop plants. Compared to the inorganic NPK fertilization, the inorganic NPK (30% N) and organic manure (70~~ N) fertilization (NPKM) increased grain yields of wheat (14%-40%) and maize (9%-6170) at four sites, but not at Zhengzhou. For a productivity of wheat at 2-5 t ha-1 or maize at 3-6 t ha 1, 13-26 or 9-17 kg K ha 1 were required to produce 1.0 t wheat or maize. The NP fertilization resulted in the lowest negative partial K balance and accumulated 52 kg K ha-1 year-1 less than the NPK fertilization, which accumulated 28 kg ha 1 year-1 less K than the NPKM fertilization. A re-evaluation of the site-specific fertilization effects on N/K ratio in crop plants and soil K accumulation under current NPK and NPKM t'ertilization is urgently needed to increase both crop yield and K use efficiency at different agroecologicai zones across China.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 40571071, 30390080 and 30370287)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0511).
文摘A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.
文摘This paper analyzes the corn production cost in China, the U.S. and Brazil from 1997 to 2014. According to the results,(1) corn production cost in China is the highest among these three countries;(2) the rapid growth of labor cost and land cost is the major factor that promotes the increase of total corn production cost in China;(3) the level of agricultural mechanization in China has been gradually improving, and the gap between agricultural mechanization levels in China and other two countries is constantly narrowing;(4) differing from the U.S. and Brazil,China exhibits a "high input, low output" agricultural production mode. Based on the above analyses, corresponding suggestions have been presented to reduce corn production cost in China.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.kzc x2-yw-406)the National Basic Research Program of China(No.2005CB121103).
文摘The North China Plain,where summer corn(Zea mays L.)and winter wheat(Triticum aestivum L.)are the major crops grown,is a major agricultural area in China.Permeable soils make the region susceptible to groundwater pollution by NO_3-N,which is applied to fields in large amounts of more than 400 kg NO_3-N ha^(-1)as fertilizer.A field experiment was established in 2002 to examine the relationship among N fertilization rate,soil NO_3-N,and NO_3-N groundwater contamination.Two adjacent fields were fertilized with local farmers' N fertilization rate(LN)and double the normal application rate(HN),respectively,and managed under otherwise identical conditions.The fields were under a traditional summer corn/winter wheat rotation.Over a 22-month period,we monitored NO_3-N concentrations in both bulk soil and soil pore water in 20-40 cm increments up to 180 cm depth.We also monitored NO_3-N concentrations in groundwater and the depth of the groundwater table.No significant differences in soil NO_3-N were observed between the LN and HN treatment.We identified NO_3-N plumes moving downward through the soil profile.The HN treatment resulted in significantly higher groundwater NO_3-N,relative to the LN treatment,with groundwater NO_3-N consistently exceeding the maximum safe level of 10 mg L^(-1),but groundwater NO_3-N above the maximum safe level was also observed in the LN treatment after heavy rain.Heavy rain in June,July,and August 2003 caused increased NO_3-N leaching through the soil and elevated NO_3-N concentrations in the groundwater.Concurrent rise of the groundwater table into NO_3-N- rich soil layers also contributed to the increased NO_3-N concentrations in the groundwater.Our results indicate that under conditions of average rainfall,soil NO_3-N was accumulated in the soil profile.The subsequent significantly higher- than-average rainfalls continuously flushed the soil NO_3-N into deeper layers and raised the groundwater table,which caused continuous groundwater contamination with NO_3-N.The results suggest that under common farming practices in the North China Plain,groundwater contamination with NO_3-N was likely,especially during heavy rainfalls,and the degree of groundwater contamination appeared to be proportional to the N application rates.Decreasing fertilization rates, splitting fertilizer inputs,and optimizing irrigation scheduling had potential to reduce groundwater NO_3-N contamination.
基金Projcet supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-341)the National Basic Research Program of China (No. 2009CB421103)the National Natural Science Foundation ofChina (Nos. 40871187 and 40930527)
文摘Soil organic carbon (SOC) and its relationship with landscape attributes are important for evaluating current regional, continental, and global carbon stores. Data of SOC in surface soils (0–20 cm) of four main soils, Cambisol, Arenosol, Phaeozem, and Chernozem, were collected at 451 locations in Nongan County under maize monoculture in the Song-Nen Plain, Northeast China. The spatial characteristics of soil organic carbon were studied, using geographic information systems (GIS) and geostatistics. Effects of other soil physical and chemical properties, elevation, slope, and soil type on SOC were explored. SOC concentrations followed a normal distribution, with an arithmetic mean of 14.91 g kg-1 . The experimental variogram of SOC was fitted with a spherical model. There were significant correlations between soil organic carbon and bulk density (r =-0.374**), pH (r = 0.549**), total nitrogen (r = 0.781**), extractable phosphorus (r =-0.109*), exchangeable potassium (r = 0.565**), and cation exchange capacity (r = 0.313**). Generally, lower SOC concentrations were significantly associated with high elevation (r =-0.429**). Soil organic carbon was significantly negatively correlated with slope gradient (r =-0.195**). Samples of the Cambisol statistically had the highest SOC concentrations, and samples of the Arenosol had the lowest SOC value.
基金Supported by the National Basic Research Program(973Program)of China(No.2009CB118601)the Foundation of the Chinese Academy of Agricultural Sciences(No.082060302-19)+2 种基金the National Natural Science Foundation of China(No.30571094)the Program for New Century Excellent Talents in University,China(No.NCET-05-0492)the Doctoral Foundation of the Ministry of Education,China(No.B200608)
文摘Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.
基金National Natural Science Foundation of China (30971895, 31011130031)Special Research Funds for the Doctoral Program of Higher Education (20080434006)+2 种基金Grants from Ministry of Science and Technology (2009ZX08003-014B)Shandong province(2009GG10009021)Modern maize industrial system of Shandong province
文摘Southern rice black-streaked dwarf virus (SRBSDV) is a novel Fijivirus prevalent in rice in southern and central China,and northern Vietnam. Its genome has 10 segments of double-stranded RNA named S1 to S10 according to their size. An isolate of SRBSDV,JNi4,was obtained from naturally infected maize plants from Ji'ning,Shandong province,in the 2008 maize season. Segments S7 to S10 of JNi4 share nucleotide identities of 72.6%-73.1%,72.3%-73%,73.9%-74.5% and 77.3%-79%,respectively,with corresponding segments of Rice black-streaked dwarf virus isolates,and identities of 99.7%,99.1%-99.7%,98.9%-99.5%,and 98.6%-99.2% with those of SRBSDV isolates HN and GD. JNi4 forms a separate branch with GD and HN in the phylogenetic trees constructed with genomic sequences of S7 to S10. These results confirm the proposed taxonomic status of SRBSDV as a distinct species of the genus Fijivirus and indicate that JNi4 is an isolate of SRBSDV. Shandong is so far the northernmost region where SRBSDV is found in China.
文摘The cultivation of genetically modified (GM) plants requires the reduction of an unwanted spread of genes (biological confinement). Cytoplasmic male sterility (CMS) inhibits the development of functional pollen, but nuclear restorer (RJ) genes and environmental impacts can restore the fertility. The aim of this study was to verify whether CMS in maize hybrids is a reliable confinement method for the prospective cultivation of GM maize in Germany. Two-year field experiments in three different environments were conducted with three CMS maize hybrids which vary in the CMS stability, one conventional maize variety (all yellow kernels) and white maize as pollen recipient. Tassel characteristics, pollen vitality and cross-pollination rates were investigated. The CMS stability was dependent on the genotype and the specific weather conditions per year and location. In all maize hybrids CMS was unstable. One CMS maize hybrid showed a high level of CMS stability and very low cross-pollination rates in any case (〈 1%). The two other CMS maize hybrids developed more fluctuant and fertile tassels with few or many pollen, respectively. Compared with a conventional and fully fertile maize variety, cross-pollination of all CMS maize hybrids was strongly reduced (84%-99%). In conclusion, the CMS trait can be proposed as a useful biological confinement method to reduce pollen-mediated gene flow from GM maize.
文摘Lepidopteran stem borers are the most damaging pests of maize in Sub-Saharan Africa. Despite the growing importance of maize in the forest zone of Democratic Republic of Congo, no data is available regarding stem borer pest species present and their relative importance. It is thus important to gather information likely to guide future research in this area. This study was undertaken to catalogue stem borer pest species identity and assess their relative infestation levels on maize. Surveys were carried out in wild and cultivated habitats in Kisangani. Five species were collected on maize, i.e., Sesamia calamistis Hampson (1910), Eldana saccharina Walker (1865), Busseola fusca Fuller (1901), Chilo sp. Strand (1913), and Mussidia nigrivenella Ragonot (1888). In the wild habitats, Poenoma serrata Hampson, B. fusca and S. calamistis were collected on Pennisetum purpureum whereas Chilo sp. was collected on Panicum maximum. Our results suggest that P. maximum might affect the population dynamics of Chilo sp. whereas P. purpureum is expected not to influence the population dynamics of other stem borers owing to its scarcity in the interior of the forest.
文摘Competition for solar radiation between plants grown in multi-species cropping systems can severely limit crop production of individual species within that system. There are various approaches for modeling light interception within mixed-cropping and row or strip intercropping systems. To extend the knowledge about model behavior and different model approaches under interspecific competition conditions, the Agricultural Production Systems Simulator (APSIM) was evaluated and calibrated for field experiments previously described and simulated by the Decision Support System for Agrotechnology Transfer (DSSAT). Initially the APSIM plant model was successfully modified to simulate wheat, maize and fieldpea monocultures in the European agro-ecological zone. Once calibrated, the APSIM model was then used to simulate a strip relay intercropping maize/wheat and maize/fieldpea system. In DSSAT, a shading algorithm was introduced to modify the daily weather input in order to take competition for solar radiation into account. In contrast, APSIM simulates interspecific competition using a modified Beer's law for multi-component canopy conditions. After a re-evaluation of the model regarding a minimum change of crop coefficients and variables, APSIM was able to simulate dry matter and grain yield of German maize, wheat and fieldpea varieties adequately. However, APSIM is a point-based model, and many of the processes that influence strip cropping cannot be accommodated by adjusting Beer's Law alone. So far none of the tested frameworks successfully modeled strip or relay intercropping. The processes governing growth in the numerous and very diversifying intercropping systems are complex and at this point in time have not been captured in sufficient detail.
文摘Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of tectonic settings, the strike and scale of causative faults, focal mechanism solutions, fault rupture process and attenuation relationship in Western China, as well as local site effects. The results are as follows: (1) The major axis of shaking intensity distribution is directed NW-SE, parallel to the Yushu fault; (2) The meizoseismal area reaches an intensity IX and covers 300km^2; (3) The intensity IX area is mainly distributed in the area 40km southeast and 15km northwest of the epicenter along the causative fault; (4) Due to local soil conditions, the northwestern part of the area with intensity IX on bedrock shows an intensity Ⅷ when converting from the bedrock to the soil; (5) Areas with intensity Ⅷ, VII, VI measure 3,000km^2, 8,000km^2, and 24,000km^2, respectively.
文摘Extreme weather and climate events are likely to cause disastrous consequences for agriculture and food security. This study investigated the impacts of drought in year 2012 on corn yield in the United States Corn Belt by integrating county-level crop yield data from the USDA NASS Quick Stats database and precipitation data from the NCDC GHCN-Daily database. It is found that precipitation over an 8-week period in corn growth stages is critical for corn yield, the logarithm of precipitation during the period explained 55% of corn yield variation. The results indicated the importance of water supply in corn silking stage, and provided an approach to assess the impacts of drought on corn yield quantitatively.
文摘Maize-rice cropping systems are expanding in Bangladesh. Hybrid maize has increasing demand and value, particularly for poultry feed, while rice remains the traditional dominant starch staple food. Bangladesh maize yields (with average farm yields around 5.7 t·ha^-1) are among the highest found in Asia. Cool winter (Rabi) season maize followed by T. Aman (monsoon) rice is the major cropping system; however it is now becoming diversified with many other crops including potato. Financially, hybrid maize is far more profitable than boro (irrigated) rice, wheat, or most other competing winter season Rabi crops. Although maize is relatively problem-free in Bangladesh, some constraints are intensifying with increased concern over input supply and soil-related environmental sustainability. An array of new technologies for sustainable intensive maize production systems is emerging in Bangladesh and some are being promoted and adopted. Continued sustainability of hybrid maize production in Bangladesh depends on optimization of planting time, quality seed of appropriate hybrids, balanced use of nutrient inputs along with soil fertility conservation and other management, for which further research would be high priority.
文摘Evapotranspiration (ETc) is an important quantity for hydrological cycle. This study shows evapotranspiration, the ratio of evaporation to evapotranspiration (E/ETc) of winter wheat and maize in north China. Several relationships, namely, E/ET0 and soil surface moisture, E/ET0 and leaf area index (LAI), are also analyzed. The average seasonal ETc values for winter wheat, maize (2008) and maize (2009) are 431.21,456.3 and 341.4mm. The value of E/ET0 varied from 1 at initial growth stage to 0.295 at the later growth for winter wheat, and from 1 to 0.492, from 1 to 0.566 for maize (2008) and maize (2009). The relationship between E/ET0 and surface soil water content, and E/ET0 and LAI are fitted to a quadratic parabola equation with significant correlation coefficients, respectively, for wheat and maize. These results should help the precise planning and efficient management of irrigation for these crops in this region.
文摘Before farmers can benefit from new improved maize varieties with novel genetic information, new maize varieties have to undergo performance testing, registration and approval. The registration procedures require that new maize varieties must pass the tests for value for cultivation and use (VCU) and standardized tests for distinctness, uniformity and stability (DUS). To meet the minimum requirements for variety release, public and private sector maize breeding programs routinely assemble breeding nurseries and evaluate variety performance in National and Regional Performance Trials (NRPT) with the objective of generating important agronomic data to identify the best maize varieties for release. In spite of intensive variety evaluation in regional and national trials, only few maize varieties have been registered and released annually in sub-Saharan Africa (SSA) denying farmers access to new improved varieties. The purpose of this study was to identify constraints hampering the registration and release of elite maize gennplasm and make recommends on how to quicken the deployment of elite germplasm to smallholders' farmers. A survey was conducted on the varietal testing and release systems in 14 selected countries (Angola, Benin, Ethiopia, Malawi, Ghana, Mali, Mozambique, Nigeria, Tanzania, Kenya, South Africa, Uganda, Zambia, and Zimbabwe) in SSA. The results from the study show that regulations on variety testing and release procedures in the various countries are overlapping and rigid hindering the deployment and commercialization of new improved maize germplasm. The study also showed that varietal release rates fluctuated between countries with South Africa having the highest number of varietal release rates per year and some countries failing to release a single variety per year.
基金supported by the National Basic Research Program of China (Grant No. 2009CB11860)the National Natural Science Foundation of China (Grant Nos. 31071852 and 30821003)the Special Fund for Agriculture Profession (Grant No. 201103003)
文摘Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modem breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L^-1, HN) and low N (0.04 mmol L^-1, LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGRroot), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.
基金Supported by the National Basic Research Program (973 program) of China (Nos. 2011CB100501 and 2007CB309108)the National Natural Science Foundation of China (No. 41071200)
文摘Sustainable potassium (K) management at different soil sites requires understanding the relationships between crop productivity and long-term K fertilizations on a regional or national scale. We analyzed responses of grain yield of wheat (Triticum aestivurn L.) and maize (Zea mays L.), K efficiency, and partial balance (difference between K input through fertilizer and K output in the aboveground biomass) during 15- (1990-2005) or 18-year (1990-2008) K fertilizations at five distinctive agroecologicai zones across China. Compared to the inorganic nitrogen (N) and phosphorus (P) fertilization, the inorganic NPK fertilization significantly increased grain yields of wheat (21%) and maize (16% 72%) at Qiyang and Changping, where soils have low exchangeable and non-exchangeable K contents, but not at Uriimqi, Yangling and Zhengzhou, where soils have a high exchangeable and non-exchangeable K and/or low N/K ratio in crop plants. Compared to the inorganic NPK fertilization, the inorganic NPK (30% N) and organic manure (70~~ N) fertilization (NPKM) increased grain yields of wheat (14%-40%) and maize (9%-6170) at four sites, but not at Zhengzhou. For a productivity of wheat at 2-5 t ha-1 or maize at 3-6 t ha 1, 13-26 or 9-17 kg K ha 1 were required to produce 1.0 t wheat or maize. The NP fertilization resulted in the lowest negative partial K balance and accumulated 52 kg K ha-1 year-1 less than the NPK fertilization, which accumulated 28 kg ha 1 year-1 less K than the NPKM fertilization. A re-evaluation of the site-specific fertilization effects on N/K ratio in crop plants and soil K accumulation under current NPK and NPKM t'ertilization is urgently needed to increase both crop yield and K use efficiency at different agroecologicai zones across China.