The anthropogenic managements of forest have created a network of roads resulting in the loss and alternation of habitat. To better understand road′s impact on animal habitats, we assessed the habitat pattern of sabl...The anthropogenic managements of forest have created a network of roads resulting in the loss and alternation of habitat. To better understand road′s impact on animal habitats, we assessed the habitat pattern of sables(Martes zibellina), one of rodents within national first-class protected species, when roads are considered in Huzhong area in Da Hinggan Mountains, northeastern China. Employing published literatures about behavior ecology, aerial photographs and forest stand maps, we classified the study area into three habitat types including best-suitable, suitable and unsuitable habitats based on sable habitat requirements at the landscape scale including four variables derived from forest source map with attribute database. Results indicated the loss and significant fragmentation of best-suitable habitat and home range habitat when roads, especially 150 m avoidance distance of roads, were considered. The roads reduced and fragmented highly suitable habitats more significantly during earlier development period than the later development period. Additionally, the suitable area percentage increased with increasing distance to roads. This study helped to identify the suitable area for sables and location of sable population. Also, this study suggested the passage construction and road management involving road closure and removal will reduce the fragmentation functionally and benefit the sable population.展开更多
Roads are conspicuous components in a river landscape;however,their impacts on river landscape patterns and ecological processes have not been systematically studied at the watershed scale.In this paper,the Lancang Ri...Roads are conspicuous components in a river landscape;however,their impacts on river landscape patterns and ecological processes have not been systematically studied at the watershed scale.In this paper,the Lancang River Valley in Yunnan Province,China was selected as a case to study road lateral disconnection and crossing impacts and identify river-road network interaction.This study was primarily focused on the road impacts on soil erosion intensity and patch density by using GIS analysis at different scales and explored their distribution with terrain factors.The results showed that river density revealed spatial autocorrelation although both of the roads and rivers were distributed unevenly in the valley.The lateral road(road curvature≥1.1)proportion correlated with soil erosion intensity(p 0.01)at the small sub-basin scale.Soil erosion intensity decreased with increasing lateral road buffer width.Light erosion generally accounted for a large proportion of the erosion in the lateral road buffer zones(1.0–4.0 km),while higher class lateral roads imposed greater impacts on soil erosion than lower class roads,which primarily had a moderate erosion level.In addition,the results of road-river intersection density indicated that road crossing impacts were significantly correlated with patch density at the small sub-basin scale.Topography factor(percent of slope>25°in each sub-basin had a close relationship with the ratio of total length of road line with curvature value≥1.1 to the total number of intersections.The correlation(p 0.01)between road impacts and terrain factor revealed that topography affected the road impact distribution in the Lancang River Valley.展开更多
Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road servic...Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road service capacity provided by a road network composed of multi-level roads(i.e.national,provincial,county and rural roads),by taking account of the differences of effect extent and intensity for roads of different levels.Summarized at town scale,the population burden and the annual rural economic income of unit road service capacity were used as the surrogates of social and economic demands for road service.This method was applied to the road network of the Three Parallel River Region,the northwestern Yunnan Province,China to evaluate the development of road network in this region.In results,the total road length of this region in 2005 was 3.70×104km,and the length ratio between national,provincial,county and rural roads was 1∶2∶8∶47.From 1989 to 2005,the regional road service capacity increased by 13.1%,of which the contributions from the national,provincial,county and rural roads were 11.1%,19.4%,22.6%,and 67.8%,respectively,revealing the effect of′All Village Accessible′policy of road development in the mountainous regions in the last decade.The spatial patterns of population burden and economic requirement of unit road service suggested that the areas farther away from the national and provincial roads have higher road development priority(RDP).Based on the modified KDE model and the framework of RDP evaluation,this study provided a useful approach for developing an optimal plan of road development at regional scale.展开更多
This paper proposes a simple low cost SIR (sustainability index for roads) that can be easily implemented by any local government that has a flexible pavement road network. The SIR includes the three pillars of sust...This paper proposes a simple low cost SIR (sustainability index for roads) that can be easily implemented by any local government that has a flexible pavement road network. The SIR includes the three pillars of sustainability, economic, social and environmental. The economic pillar is development from a new perspective of pavement deterioration from the Snowy Mountains Engineering Corporation's Pavement Management System. The new perspective is easily seen when the deterioration is plotted in three dimensions. This new exponential curve provides an equation for the return on investment in a road network, in terms of a future pavement condition index versus the annual rehabilitation budget. The environmental pillar will be developed by determining which road rehabilitation treatments cause the most environmental damage and recreating the new curve with these treatments being incrementally removed. The resulting curves will provide the annual cost of minimizing environmental damage and the loss of pavement condition index for minimizing environmental damage. The social pillar is, consultation with the community on what pavement condition index they are willing to fund, that is, balancing annual cost, environmental damage and desired pavement condition. This more efficient reporting conforms with the USA Government Accounting Standards Board requirements but not necessarily with the International Financial Reporting Standards. This new SIR reduces the current financial reporting requirement for local govemments in Queensland, Australia and can greatly improve comparability of financial reporting, where local governments calibrate the pavement deterioration factors in their Pavement Management Systems and use the newly developed regional rulebase.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41271201,31070422,41201185)
文摘The anthropogenic managements of forest have created a network of roads resulting in the loss and alternation of habitat. To better understand road′s impact on animal habitats, we assessed the habitat pattern of sables(Martes zibellina), one of rodents within national first-class protected species, when roads are considered in Huzhong area in Da Hinggan Mountains, northeastern China. Employing published literatures about behavior ecology, aerial photographs and forest stand maps, we classified the study area into three habitat types including best-suitable, suitable and unsuitable habitats based on sable habitat requirements at the landscape scale including four variables derived from forest source map with attribute database. Results indicated the loss and significant fragmentation of best-suitable habitat and home range habitat when roads, especially 150 m avoidance distance of roads, were considered. The roads reduced and fragmented highly suitable habitats more significantly during earlier development period than the later development period. Additionally, the suitable area percentage increased with increasing distance to roads. This study helped to identify the suitable area for sables and location of sable population. Also, this study suggested the passage construction and road management involving road closure and removal will reduce the fragmentation functionally and benefit the sable population.
基金Under the auspices of Nonprofit Environment Protection Specific Project of China(No.201209029-4)National Natural Science Foundation of China(No.50939001)
文摘Roads are conspicuous components in a river landscape;however,their impacts on river landscape patterns and ecological processes have not been systematically studied at the watershed scale.In this paper,the Lancang River Valley in Yunnan Province,China was selected as a case to study road lateral disconnection and crossing impacts and identify river-road network interaction.This study was primarily focused on the road impacts on soil erosion intensity and patch density by using GIS analysis at different scales and explored their distribution with terrain factors.The results showed that river density revealed spatial autocorrelation although both of the roads and rivers were distributed unevenly in the valley.The lateral road(road curvature≥1.1)proportion correlated with soil erosion intensity(p 0.01)at the small sub-basin scale.Soil erosion intensity decreased with increasing lateral road buffer width.Light erosion generally accounted for a large proportion of the erosion in the lateral road buffer zones(1.0–4.0 km),while higher class lateral roads imposed greater impacts on soil erosion than lower class roads,which primarily had a moderate erosion level.In addition,the results of road-river intersection density indicated that road crossing impacts were significantly correlated with patch density at the small sub-basin scale.Topography factor(percent of slope>25°in each sub-basin had a close relationship with the ratio of total length of road line with curvature value≥1.1 to the total number of intersections.The correlation(p 0.01)between road impacts and terrain factor revealed that topography affected the road impact distribution in the Lancang River Valley.
基金Under the auspices of National Natural Science Foundation of China(No.41371190,31021001)Scientific and Tech-nical Projects of Western China Transportation Construction,Ministry of Transport of China(No.2008-318-799-17)
文摘Road network is a critical component of public infrastructure,and the supporting system of social and economic development.Based on a modified kernel density estimate(KDE)algorithm,this study evaluated the road service capacity provided by a road network composed of multi-level roads(i.e.national,provincial,county and rural roads),by taking account of the differences of effect extent and intensity for roads of different levels.Summarized at town scale,the population burden and the annual rural economic income of unit road service capacity were used as the surrogates of social and economic demands for road service.This method was applied to the road network of the Three Parallel River Region,the northwestern Yunnan Province,China to evaluate the development of road network in this region.In results,the total road length of this region in 2005 was 3.70×104km,and the length ratio between national,provincial,county and rural roads was 1∶2∶8∶47.From 1989 to 2005,the regional road service capacity increased by 13.1%,of which the contributions from the national,provincial,county and rural roads were 11.1%,19.4%,22.6%,and 67.8%,respectively,revealing the effect of′All Village Accessible′policy of road development in the mountainous regions in the last decade.The spatial patterns of population burden and economic requirement of unit road service suggested that the areas farther away from the national and provincial roads have higher road development priority(RDP).Based on the modified KDE model and the framework of RDP evaluation,this study provided a useful approach for developing an optimal plan of road development at regional scale.
文摘This paper proposes a simple low cost SIR (sustainability index for roads) that can be easily implemented by any local government that has a flexible pavement road network. The SIR includes the three pillars of sustainability, economic, social and environmental. The economic pillar is development from a new perspective of pavement deterioration from the Snowy Mountains Engineering Corporation's Pavement Management System. The new perspective is easily seen when the deterioration is plotted in three dimensions. This new exponential curve provides an equation for the return on investment in a road network, in terms of a future pavement condition index versus the annual rehabilitation budget. The environmental pillar will be developed by determining which road rehabilitation treatments cause the most environmental damage and recreating the new curve with these treatments being incrementally removed. The resulting curves will provide the annual cost of minimizing environmental damage and the loss of pavement condition index for minimizing environmental damage. The social pillar is, consultation with the community on what pavement condition index they are willing to fund, that is, balancing annual cost, environmental damage and desired pavement condition. This more efficient reporting conforms with the USA Government Accounting Standards Board requirements but not necessarily with the International Financial Reporting Standards. This new SIR reduces the current financial reporting requirement for local govemments in Queensland, Australia and can greatly improve comparability of financial reporting, where local governments calibrate the pavement deterioration factors in their Pavement Management Systems and use the newly developed regional rulebase.